2014
Dysfunction and recovery in demyelinated and dysmyelinated axons
Waxman S. Dysfunction and recovery in demyelinated and dysmyelinated axons. 2014, 457-471. DOI: 10.1017/cbo9780511995583.034.Peer-Reviewed Original ResearchNervous systemNeural repairNormal central nervous systemSpinal cord damageRecovery of functionCentral nervous systemNeuron replacementCerebral palsyCord damageAxonal regenerationNeuronal deathAxon regenerationNeurological rehabilitationBrain disordersCell therapyRehabilitation professionalsRepairRehabilitationBasic scienceStem cell biologyPalsyDysfunctionPathophysiologyInjuryTherapy
2011
Sodium channels and microglial function
Black JA, Waxman SG. Sodium channels and microglial function. Experimental Neurology 2011, 234: 302-315. PMID: 21985863, DOI: 10.1016/j.expneurol.2011.09.030.Peer-Reviewed Original ResearchConceptsCentral nervous systemSodium channel isoformsEffector functionsChannel isoformsMultiple cytokines/chemokinesResident immune cellsResponse of microgliaCytokines/chemokinesVoltage-gated sodium channel isoformsSpinal cord parenchymaSodium channel activityMicroglial functionPromotion of repairCord parenchymaImmune cellsMicrogliaNervous systemCell surface receptorsContinuous surveillanceAdhesion moleculesSodium channelsActivating signalsChannel activitySignaling pathwaysSurface receptors
2010
Slowly Progressive Axonal Degeneration in a Rat Model of Chronic, Nonimmune-Mediated Demyelination
Wilkins A, Kondo Y, Song J, Liu S, Compston A, Black J, Waxman S, Duncan I. Slowly Progressive Axonal Degeneration in a Rat Model of Chronic, Nonimmune-Mediated Demyelination. Journal Of Neuropathology & Experimental Neurology 2010, 69: 1256-1269. PMID: 21107138, DOI: 10.1097/nen.0b013e3181ffc317.Peer-Reviewed Original ResearchConceptsCentral nervous systemAxonal lossAxonal degenerationAxonal pathologyTrophic supportEarly axonal lossProgressive axonal lossProgressive axonal degenerationWhite matter tractsTaiep mutant ratNerve countsWild-type controlsChronic demyelinationNeurologic disabilityMyelin lossSignificant inflammationRat modelOligodendrocyte dysfunctionImmunohistochemical analysisTaiep ratsNervous systemCNS regionsAxonal transportMutant ratsOligodendrocyte lineage
2009
Multiple Sclerosis
Preiningerova J, Bomprezzi R, Vollmer T, Waxman S. Multiple Sclerosis. 2009 DOI: 10.1002/9780470015902.a0000192.pub2.Peer-Reviewed Original ResearchCentral nervous systemMagnetic resonance imagingMultiple sclerosisImmune attackMS patientsNeurological disabilityInflammatory diseasesT cellsNervous systemTreatment of MSPathogenesis of MSProgression of MSBrain magnetic resonance imagingYoung womenAutoaggressive T cellsRegulatory T cellsLong-term disabilityDiseases of myelinMajor advancesDisease activityOngoing inflammationImmunotherapeutic strategiesAutoimmune diseasesClinical appearanceHumoral mechanisms
2003
Multiple Sclerosis
Vollmer T, Preiningerova J, Waxman S. Multiple Sclerosis. 2003 DOI: 10.1038/npg.els.0000192.Peer-Reviewed Original Research
1995
Na+ channel β1 subunit mRNA expression in developing rat central nervous system
Sashihara S, Oh Y, Black J, Waxman S. Na+ channel β1 subunit mRNA expression in developing rat central nervous system. Brain Research 1995, 34: 239-250. PMID: 8750827, DOI: 10.1016/0169-328x(95)00168-r.Peer-Reviewed Original ResearchConceptsGranule cell layerCell layerRat central nervous systemBeta 1Channel beta 1 subunitRexed's lamina IXDentate granule cellsPyramidal cell layerPostnatal day 2Beta 1 expressionSpecific neuronal populationsVentral-dorsal gradientCentral nervous systemSubunit mRNA expressionVoltage-dependent sodium channelsExternal granule cell layerInternal granule cell layerDorsal hornVentral hornLamina IXSpinal cordBeta 1 subunitAdult ratsIntensity of labelingGranule cellsNa+ channel β1 subunit mRNA: differential expression in rat spinal sensory neurons
Oh Y, Sashihara S, Black J, Waxman S. Na+ channel β1 subunit mRNA: differential expression in rat spinal sensory neurons. Brain Research 1995, 30: 357-361. PMID: 7637585, DOI: 10.1016/0169-328x(95)00052-t.Peer-Reviewed Original ResearchConceptsDRG neuronsNervous systemChannel beta 1 subunit (Na beta 1) mRNARat dorsal root ganglion neuronsCell bodiesDorsal root ganglion neuronsSubunit mRNAsBeta 1 mRNA expressionRat central nervous systemSmall DRG neuronsLarge DRG neuronsSpinal sensory neuronsPeripheral nervous systemPostnatal day 4Central nervous systemBeta 1 mRNABeta 1 subunit mRNASitu hybridization histochemistryAdult DRGGanglion neuronsSensory neuronsDay 4Hybridization histochemistryMRNA expressionNeuronsThe oligodendrocyte, the perinodal astrocyte, and the central node of Ranvier
BLACK J, SONTHEIMER H, OH Y, WAXMAN S. The oligodendrocyte, the perinodal astrocyte, and the central node of Ranvier. 1995, 116-143. DOI: 10.1093/acprof:oso/9780195082937.003.0006.Peer-Reviewed Original ResearchAnoxic/ischemic injury in axons
STYS P, RANSOM B, BLACK J, WAXMAN S. Anoxic/ischemic injury in axons. 1995, 462-479. DOI: 10.1093/acprof:oso/9780195082937.003.0024.Peer-Reviewed Original ResearchNerve fibersNervous systemAnoxic/ischemic injuryPeripheral nervous systemAnoxia/ischemiaCentral nervous systemIschemic injuryPeripheral axonsAction potential propagationAxonsNormal functionPathological statesBiochemical homeostasisTransmembrane ion gradientsCellular energy metabolismInjuryEnergy metabolismPotential propagationSurvivalHuman diseasesMajor mechanismIon gradientsMembrane polarizationIschemiaDisease
1991
Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter
Stys P, Waxman S, Ransom B. Na+‐Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter. Annals Of Neurology 1991, 30: 375-380. PMID: 1952825, DOI: 10.1002/ana.410300309.Peer-Reviewed Original ResearchConceptsWhite matterIsolated rat optic nerveCentral nervous system white matterNervous system white matterWhite matter injuryRat optic nerveMammalian central nervous systemSevere neurological impairmentCompound action potentialType of injuryCentral nervous systemFunctional recoveryOptic nervePharmacological blockadeNeurological impairmentAnoxic injuryIrreversible injuryNervous systemAction potentialsInjuryInfluxCa2Critical mechanismCellsNerve
1988
Nonpyramidal Motor Systems and Functional Recovery After Damage to the Central Nervous System
Waxman S. Nonpyramidal Motor Systems and Functional Recovery After Damage to the Central Nervous System. Neurorehabilitation And Neural Repair 1988, 2: 1-6. DOI: 10.1177/136140968800200101.Peer-Reviewed Original ResearchLateral corticospinal tractCentral nervous systemCorticospinal tractProximal musculatureNervous systemMotor systemProximal limb musculatureResidual motor functionMotor controlCorticobulbar pathwaysMost patientsDistal musclesCortical lesionsFunctional recoveryBilateral innervationMotor cortexMotor functionMotor neuronsMaintenance of postureClinical observationsUnilateral damageBilateral damagePatientsNeurological diseasesMotor response
1980
Coordinated micropinocytotic activity of adjacent neuronal membranes in mammalian central nervous system
Waxman S, Waxman M, Pappas G. Coordinated micropinocytotic activity of adjacent neuronal membranes in mammalian central nervous system. Neuroscience Letters 1980, 20: 141-146. PMID: 7443064, DOI: 10.1016/0304-3940(80)90136-6.Peer-Reviewed Original ResearchConceptsExocytosis/endocytosisMembrane infoldingsMammalian central nervous systemCoated invaginationsNon-synaptic sitesNeuronal membranesCell membraneCentral nervous systemCoordinated activityNervous systemMembraneInvaginationMicropinocytotic activityInfoldingsElectrotonic synapsesEndocytosisSpeciesCytoplasmTissueNumber of sitesSitesSynapsesWide varietyActivityNeighboring dendritesLysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Electron-microscopic observations
Foster R, Kocsis J, Malenka R, Waxman S. Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Electron-microscopic observations. Journal Of The Neurological Sciences 1980, 48: 221-231. PMID: 7431040, DOI: 10.1016/0022-510x(80)90202-6.Peer-Reviewed Original ResearchConceptsCorpus callosumLysophosphatidyl cholineFocal demyelinating lesionsCentral nervous systemDemyelinating lesionsLPC injectionDemyelinated axonsFocal demyelinationElectron microscopic examinationElectrophysiological studiesNervous systemElectrophysiological controlEarly signsCallosumAxonsDemyelinationInjectionElectron microscopic observationsRemyelinationPressure injectionLesions
1979
Ultrastructure and Conduction Properties of Visual Callosal Axons of the Rabbit
Swadlow H, Waxman S. Ultrastructure and Conduction Properties of Visual Callosal Axons of the Rabbit. 1979, 195-210. DOI: 10.1007/978-1-349-03645-5_15.Peer-Reviewed Original Research
1975
Observations on impulse conduction along central axons.
Swadlow H, Waxman S. Observations on impulse conduction along central axons. Proceedings Of The National Academy Of Sciences Of The United States Of America 1975, 72: 5156-5159. PMID: 1061101, PMCID: PMC388895, DOI: 10.1073/pnas.72.12.5156.Peer-Reviewed Original Research
1972
Relative Conduction Velocities of Small Myelinated and Non-myelinated Fibres in the Central Nervous System
WAXMAN S, BENNETT M. Relative Conduction Velocities of Small Myelinated and Non-myelinated Fibres in the Central Nervous System. Nature 1972, 238: 217-219. PMID: 4506206, DOI: 10.1038/newbio238217a0.Peer-Reviewed Original Research
1971
An ultrastructural study of the pattern of myelination of preterminal fibers in teleost oculomotor nuclei, electromotor nuclei, and spinal cord
Waxman S. An ultrastructural study of the pattern of myelination of preterminal fibers in teleost oculomotor nuclei, electromotor nuclei, and spinal cord. Brain Research 1971, 27: 189-201. PMID: 5552167, DOI: 10.1016/0006-8993(71)90248-4.Peer-Reviewed Original ResearchConceptsPattern of myelinationSpinal cordOculomotor nucleusElectromotor nucleusProportion of synapsesPreterminal fibersPeripheral nerve fibersCentral nervous systemCentral myelinated fibersNodes of RanvierUnmyelinated regionsNerve fibersMyelinated fibersConduction velocityNervous systemCordMyelinationNervous impulsesUltrastructural studySynapsesClose membrane appositionBulbous protrusionsMembrane appositionAxonsNucleus
1970
Closely Spaced Nodes of Ranvier in the Teleost Brain
WAXMAN S. Closely Spaced Nodes of Ranvier in the Teleost Brain. Nature 1970, 227: 283-284. PMID: 5428197, DOI: 10.1038/227283a0.Peer-Reviewed Original Research