2021
Inference and analysis of cell-cell communication using CellChat
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-cell communication using CellChat. Nature Communications 2021, 12: 1088. PMID: 33597522, PMCID: PMC7889871, DOI: 10.1038/s41467-021-21246-9.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencing dataCell-cell communicationEffective systems-level analysesDatabase of interactionsRNA sequencing dataIntercellular communication networksContext-specific pathwaysCellChatDiverse tissuesIntercellular communicationSystem-level analysisSignaling linkNetwork analysisPathwayCellsMolecular complexesCofactorComplexesReceptors
2019
A novel mouse model demonstrates that oncogenic melanocyte stem cells engender melanoma resembling human disease
Sun Q, Lee W, Mohri Y, Takeo M, Lim CH, Xu X, Myung P, Atit RP, Taketo MM, Moubarak RS, Schober M, Osman I, Gay DL, Saur D, Nishimura EK, Ito M. A novel mouse model demonstrates that oncogenic melanocyte stem cells engender melanoma resembling human disease. Nature Communications 2019, 10: 5023. PMID: 31685822, PMCID: PMC6828673, DOI: 10.1038/s41467-019-12733-1.Peer-Reviewed Original ResearchConceptsMouse modelNovel mouse modelMelanoma progression modelDeadly skin cancerAnimal modelsSkin cancerBona fide sourceAdvanced stageMelanoma inductionMalignant transformationHuman melanomaMelanomaGene signatureAnagen onsetMolecular profilingMelanoma initiationMelanocyte stem cellsNormal WntStem cellsProgression modelHuman diseasesRecent studiesCancerDiseaseProgression
2018
Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing
Lim CH, Sun Q, Ratti K, Lee SH, Zheng Y, Takeo M, Lee W, Rabbani P, Plikus MV, Cain JE, Wang DH, Watkins DN, Millar S, Taketo MM, Myung P, Cotsarelis G, Ito M. Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing. Nature Communications 2018, 9: 4903. PMID: 30464171, PMCID: PMC6249328, DOI: 10.1038/s41467-018-07142-9.Peer-Reviewed Original ResearchConceptsSonic hedgehog pathwayMechanisms of scarringHair follicle neogenesisHF neogenesisFibrotic repairScarring woundsMurine skinShh overexpressionWound repairHair follicle regenerationWound healingFollicle neogenesisHedgehog pathwayDermal papillaWnt activationFibrosisWoundsScarringHealingSignal activationNeogenesisActivation resultsMammalian woundsActivationFollicle regenerationDissecting Wnt Signaling for Melanocyte Regulation during Wound Healing
Sun Q, Rabbani P, Takeo M, Lee SH, Lim CH, Noel ES, Taketo MM, Myung P, Millar S, Ito M. Dissecting Wnt Signaling for Melanocyte Regulation during Wound Healing. Journal Of Investigative Dermatology 2018, 138: 1591-1600. PMID: 29428355, PMCID: PMC6019608, DOI: 10.1016/j.jid.2018.01.030.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCicatrixDisease Models, AnimalFemaleHumansIntercellular Signaling Peptides and ProteinsIntracellular Signaling Peptides and ProteinsKeratinocytesMaleMelanocytesMiceMice, TransgenicReceptors, G-Protein-CoupledRegenerationSkinSkin PigmentationStem CellsWnt ProteinsWnt Signaling PathwayWound HealingConceptsMelanocyte stem cellsMelanocyte regenerationEpidermal melanocytesStem cellsWnt ligand secretionActivation of WntWound healingSignal regulationEssential functionsWnt inhibitor Dkk1Wnt ligandsLigand secretionVital regulatorWnt pathwayTransgenic expressionWntMolecular windowΒ-cateninMelanocyte regulationInhibitor DKK1Epithelial cellsMelanocytesWound scarsRegulationAbnormal pigmentation
2015
Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool
Mesa KR, Rompolas P, Zito G, Myung P, Sun TY, Brown S, Gonzalez DG, Blagoev KB, Haberman AM, Greco V. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature 2015, 522: 94-97. PMID: 25849774, PMCID: PMC4457634, DOI: 10.1038/nature14306.Peer-Reviewed Original Research
2014
β-Catenin Activation Regulates Tissue Growth Non–Cell Autonomously in the Hair Stem Cell Niche
Deschene ER, Myung P, Rompolas P, Zito G, Sun TY, Taketo MM, Saotome I, Greco V. β-Catenin Activation Regulates Tissue Growth Non–Cell Autonomously in the Hair Stem Cell Niche. Science 2014, 343: 1353-1356. PMID: 24653033, PMCID: PMC4096864, DOI: 10.1126/science.1248373.Peer-Reviewed Original ResearchConceptsWild-type cellsWnt/β-catenin signalingΒ-catenin signalingΒ-catenin activationMouse hair follicle stem cellsΒ-cateninStem cell nicheHair follicle stem cellsFollicle stem cellsNiche signalsMutant cellsCell divisionCell nicheCoordinated regenerationHair growthWnt ligandsCellular displacementCell behaviorStem cellsHair regenerationTissue growthSignalingCellsTissue regenerationActivation
2012
Epithelial Wnt Ligand Secretion Is Required for Adult Hair Follicle Growth and Regeneration
Myung PS, Takeo M, Ito M, Atit RP. Epithelial Wnt Ligand Secretion Is Required for Adult Hair Follicle Growth and Regeneration. Journal Of Investigative Dermatology 2012, 133: 31-41. PMID: 22810306, PMCID: PMC3479363, DOI: 10.1038/jid.2012.230.Peer-Reviewed Original ResearchConceptsWnt ligand secretionHair follicle epitheliumFollicle growthHair follicle growthWnt ligandsEpithelial Wnt ligandsHair cycle arrestFollicular epitheliumLigand secretionFollicle epitheliumWnt/β-catenin activationΒ-cateninAnagen inductionWnt/β-cateninStem cell markersΒ-catenin activationPotential cellular targetsHair follicle stem cellsCellular sourceCell markersHair disordersFollicle stem cellsHair folliclesEpitheliumHair follicle regeneration
2011
Coordinated Activation of Wnt in Epithelial and Melanocyte Stem Cells Initiates Pigmented Hair Regeneration
Rabbani P, Takeo M, Chou W, Myung P, Bosenberg M, Chin L, Taketo MM, Ito M. Coordinated Activation of Wnt in Epithelial and Melanocyte Stem Cells Initiates Pigmented Hair Regeneration. Cell 2011, 145: 941-955. PMID: 21663796, PMCID: PMC3962257, DOI: 10.1016/j.cell.2011.05.004.Peer-Reviewed Original ResearchConceptsSecondary hair germMelanocyte stem cellsStem cellsStem cell behaviorStem cell populationHair regenerationHair follicle formationPigment-producing melanocytesHair follicle regenerationHair follicle bulgeEpithelial stem cellsGenetic mouse modelsCoordinated activationWntKey pathwaysCell behaviorWnt activationFollicle bulgeFollicle regenerationComplex organHair germFollicle formationCell populationsMcSCsCells
2003
Macrophage activation and Fcγ receptor-mediated signaling do not require expression of the SLP-76 and SLP-65 adaptors
Nichols KE, Haines K, Myung PS, Newbrough S, Myers E, Jumaa H, Shedlock DJ, Shen H, Koretzky GA. Macrophage activation and Fcγ receptor-mediated signaling do not require expression of the SLP-76 and SLP-65 adaptors. Journal Of Leukocyte Biology 2003, 75: 541-552. PMID: 14694181, DOI: 10.1189/jlb.0703312.Peer-Reviewed Original ResearchConceptsBone marrow-derived macrophagesSLP-76SLP-65Extracellular signaling-regulated kinase 1Sheep red blood cellsInitial host defenseLow-dose infectionNumber of liverWild-type miceSrc homology 2Functional eventsMarrow-derived macrophagesTotal body burdenReceptor-mediated signalingReceptor-induced activationRed blood cellsLeukocyte-specific phosphoproteinReactive oxygen intermediatesT lymphocytesMast cellsFc receptorsMacrophage activationListeria monocytogenesHost defenseColony-forming units
2002
Differential Requirement for LAT and SLP-76 in GPVI versus T Cell Receptor Signaling
Judd BA, Myung PS, Obergfell A, Myers EE, Cheng AM, Watson SP, Pear WS, Allman D, Shattil SJ, Koretzky GA. Differential Requirement for LAT and SLP-76 in GPVI versus T Cell Receptor Signaling. Journal Of Experimental Medicine 2002, 195: 705-717. PMID: 11901197, PMCID: PMC2193740, DOI: 10.1084/jem.20011583.Peer-Reviewed Original Research
2001
Differential Requirement for SLP-76 Domains in T Cell Development and Function
Myung P, Derimanov G, Jordan M, Punt J, Liu Q, Judd B, Meyers E, Sigmund C, Freedman B, Koretzky G. Differential Requirement for SLP-76 Domains in T Cell Development and Function. Immunity 2001, 15: 1011-1026. PMID: 11754821, DOI: 10.1016/s1074-7613(01)00253-9.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid MotifsAmino Acid SubstitutionAnimalsBinding SitesCalcium SignalingCarrier ProteinsCD3 ComplexCell DifferentiationClonal DeletionImmunophenotypingMembrane ProteinsMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMutation, MissensePhosphoproteinsProtein Structure, TertiaryReceptors, Antigen, T-CellRecombinant Fusion ProteinsSequence DeletionSignal TransductionSpleenSrc Homology DomainsStructure-Activity RelationshipThymus GlandT-LymphocytesConceptsSLP-76T cell developmentCell developmentDifferential requirementSLP-76 functionT cell receptor signalingCell receptor signalingAdaptor proteinMolecular mechanismsNull backgroundExamination of miceReceptor signalingCell functionPeripheral T cellsNew insightsTransgenic miceStructural requirementsSpecific domainsT cell functionT cellsCellsDomainMutantsThymocytesSignalingCoupling of the TCR to Integrin Activation by SLAP-130/Fyb
Peterson E, Woods M, Dmowski S, Derimanov G, Jordan M, Wu J, Myung P, Liu Q, Pribila J, Freedman B, Shimizu Y, Koretzky G. Coupling of the TCR to Integrin Activation by SLAP-130/Fyb. Science 2001, 293: 2263-2265. PMID: 11567141, DOI: 10.1126/science.1063486.Peer-Reviewed Original ResearchMeSH KeywordsActinsAdaptor Proteins, Signal TransducingAnimalsAntigens, CDAntigens, Differentiation, T-LymphocyteCarrier ProteinsCD3 ComplexCell AdhesionCell MembraneImmunologic CappingIntercellular Adhesion Molecule-1Interleukin-2Lectins, C-TypeLymphocyte ActivationLymphocyte Function-Associated Antigen-1MicePhosphatidylinositol 3-KinasesPhosphoproteinsProtein-Tyrosine KinasesReceptors, Antigen, T-CellReceptors, Interleukin-2Signal TransductionT-LymphocytesSeparation of Notch1 Promoted Lineage Commitment and Expansion/Transformation in Developing T Cells
Allman D, Karnell F, Punt J, Bakkour S, Xu L, Myung P, Koretzky G, Pui J, Aster J, Pear W. Separation of Notch1 Promoted Lineage Commitment and Expansion/Transformation in Developing T Cells. Journal Of Experimental Medicine 2001, 194: 99-106. PMID: 11435476, PMCID: PMC2193437, DOI: 10.1084/jem.194.1.99.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone MarrowCell LineageDNA-Binding ProteinsHematopoietic Stem CellsHyaluronan ReceptorsLeukemia, T-CellMembrane ProteinsMiceMice, TransgenicReceptor, Notch1Receptors, Antigen, T-Cell, alpha-betaReceptors, Cell SurfaceReceptors, Interleukin-2Signal TransductionThymus GlandT-LymphocytesTranscription FactorsConceptsT lineage commitmentT cell developmentHematopoietic stem cellsLineage commitmentCell developmentSrc homology 2 domainPre-T cell receptorBone marrowT cell-specific signalsBM transferT cellsCell-specific signalsMultipotent progenitor cellsDouble-positive T cellsTCR-beta transgeneLeukocyte proteinBM cell populationsFunction of Notch1T-cell leukemiaLater time pointsCD3 epsilonActive Notch1Beta transgeneBM cellsCell leukemiaNotch1 Regulates Maturation of CD4+ and CD8+ Thymocytes by Modulating TCR Signal Strength
Izon D, Punt J, Xu L, Karnell F, Allman D, Myung P, Boerth N, Pui J, Koretzky G, Pear W. Notch1 Regulates Maturation of CD4+ and CD8+ Thymocytes by Modulating TCR Signal Strength. Immunity 2001, 14: 253-264. PMID: 11290335, DOI: 10.1016/s1074-7613(01)00107-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDAntigens, Differentiation, T-LymphocyteCD4-Positive T-LymphocytesCD5 AntigensCD8-Positive T-LymphocytesCell DifferentiationDNA-Binding ProteinsFlow CytometryGene Expression RegulationHistocompatibility Antigens Class IHistocompatibility Antigens Class IIHumansJurkat CellsLectins, C-TypeLiverMembrane ProteinsMiceMice, TransgenicNFATC Transcription FactorsNuclear ProteinsPromoter Regions, GeneticReceptor, Notch1Receptors, Antigen, T-CellReceptors, Cell SurfaceResponse ElementsSignal TransductionThymus GlandTranscription Factor AP-1Transcription FactorsConceptsTCR signal strengthCell fate decisionsJurkat T cellsTCR-mediated signalingT cell developmentFate decisionsMultiple lineagesNotch signalingDevelopmental arrestCell developmentNotch expressionThymocyte developmentTCR stimulationRetroviral expressionT cellsPhysiological regulationSingle-positive T cellsTCR transgenic thymocytesDifferentiation of immatureTransgenic thymocytesNotch1Maturation of CD4SignalingMouse thymocytesThymocytes
2000
Hematopoietic reconstitution of SLP-76 corrects hemostasis and platelet signaling through αIIbβ3 and collagen receptors
Judd B, Myung P, Leng L, Obergfell A, Pear W, Shattil S, Koretzky G. Hematopoietic reconstitution of SLP-76 corrects hemostasis and platelet signaling through αIIbβ3 and collagen receptors. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 12056-12061. PMID: 11050236, PMCID: PMC17293, DOI: 10.1073/pnas.97.22.12056.Peer-Reviewed Original ResearchConceptsSLP-76Alpha IIbAdapter protein SLP-76SLP-76 functionSLP-76-deficient miceRapid tyrosine phosphorylationSLP-76-deficient plateletsTyrosine phosphorylated proteinsCollagen receptorCollagen receptor signalingT cell developmentPlatelet fibrinogen receptorPhosphorylated proteinsActin rearrangementCell peripheryLamellipodial extensionTyrosine phosphorylationCell developmentMurine plateletsRetroviral transductionReceptor signalingBind fibrinogenHematopoietic cellsFibrinogen receptorPlatelet-bound fibrinogenIn vitro and in vivo macrophage function can occur independently of SLP-76
Myung PS, Clements JL, White DW, Malik ZA, Cowdery JS, Allen LH, Harty JT, Kusner DJ, Koretzky GA. In vitro and in vivo macrophage function can occur independently of SLP-76. International Immunology 2000, 12: 887-897. PMID: 10837416, DOI: 10.1093/intimm/12.6.887.Peer-Reviewed Original ResearchConceptsBone marrow-derived macrophagesFc gamma RWild-type miceGamma RT cellsMacrophage functionStable chronic infectionVivo macrophage functionDownstream mediatorWild-type bone marrow-derived macrophagesFc gamma R ligationCultured bone marrow-derived macrophagesMature T cellsMarrow-derived macrophagesOxygen intermediate productionPlatelet collagen receptorAcute phaseIL-12Chronic infectionMast cellsEffector functionsIFN-gammaPhagocytic functionFc gammaR stimulation
1999
Differential regulation of the IL-12 p40 promoter and of p40 secretion by CpG DNA and lipopolysaccharide.
Cowdery J, Boerth N, Norian L, Myung P, Koretzky G. Differential regulation of the IL-12 p40 promoter and of p40 secretion by CpG DNA and lipopolysaccharide. The Journal Of Immunology 1999, 162: 6770-5. PMID: 10352297, DOI: 10.4049/jimmunol.162.11.6770.Peer-Reviewed Original Research