2002
Differential Requirement for LAT and SLP-76 in GPVI versus T Cell Receptor Signaling
Judd BA, Myung PS, Obergfell A, Myers EE, Cheng AM, Watson SP, Pear WS, Allman D, Shattil SJ, Koretzky GA. Differential Requirement for LAT and SLP-76 in GPVI versus T Cell Receptor Signaling. Journal Of Experimental Medicine 2002, 195: 705-717. PMID: 11901197, PMCID: PMC2193740, DOI: 10.1084/jem.20011583.Peer-Reviewed Original Research
2001
Differential Requirement for SLP-76 Domains in T Cell Development and Function
Myung P, Derimanov G, Jordan M, Punt J, Liu Q, Judd B, Meyers E, Sigmund C, Freedman B, Koretzky G. Differential Requirement for SLP-76 Domains in T Cell Development and Function. Immunity 2001, 15: 1011-1026. PMID: 11754821, DOI: 10.1016/s1074-7613(01)00253-9.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid MotifsAmino Acid SubstitutionAnimalsBinding SitesCalcium SignalingCarrier ProteinsCD3 ComplexCell DifferentiationClonal DeletionImmunophenotypingMembrane ProteinsMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMutation, MissensePhosphoproteinsProtein Structure, TertiaryReceptors, Antigen, T-CellRecombinant Fusion ProteinsSequence DeletionSignal TransductionSpleenSrc Homology DomainsStructure-Activity RelationshipThymus GlandT-LymphocytesConceptsSLP-76T cell developmentCell developmentDifferential requirementSLP-76 functionT cell receptor signalingCell receptor signalingAdaptor proteinMolecular mechanismsNull backgroundExamination of miceReceptor signalingCell functionPeripheral T cellsNew insightsTransgenic miceStructural requirementsSpecific domainsT cell functionT cellsCellsDomainMutantsThymocytesSignalingCoupling of the TCR to Integrin Activation by SLAP-130/Fyb
Peterson E, Woods M, Dmowski S, Derimanov G, Jordan M, Wu J, Myung P, Liu Q, Pribila J, Freedman B, Shimizu Y, Koretzky G. Coupling of the TCR to Integrin Activation by SLAP-130/Fyb. Science 2001, 293: 2263-2265. PMID: 11567141, DOI: 10.1126/science.1063486.Peer-Reviewed Original ResearchMeSH KeywordsActinsAdaptor Proteins, Signal TransducingAnimalsAntigens, CDAntigens, Differentiation, T-LymphocyteCarrier ProteinsCD3 ComplexCell AdhesionCell MembraneImmunologic CappingIntercellular Adhesion Molecule-1Interleukin-2Lectins, C-TypeLymphocyte ActivationLymphocyte Function-Associated Antigen-1MicePhosphatidylinositol 3-KinasesPhosphoproteinsProtein-Tyrosine KinasesReceptors, Antigen, T-CellReceptors, Interleukin-2Signal TransductionT-LymphocytesSeparation of Notch1 Promoted Lineage Commitment and Expansion/Transformation in Developing T Cells
Allman D, Karnell F, Punt J, Bakkour S, Xu L, Myung P, Koretzky G, Pui J, Aster J, Pear W. Separation of Notch1 Promoted Lineage Commitment and Expansion/Transformation in Developing T Cells. Journal Of Experimental Medicine 2001, 194: 99-106. PMID: 11435476, PMCID: PMC2193437, DOI: 10.1084/jem.194.1.99.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone MarrowCell LineageDNA-Binding ProteinsHematopoietic Stem CellsHyaluronan ReceptorsLeukemia, T-CellMembrane ProteinsMiceMice, TransgenicReceptor, Notch1Receptors, Antigen, T-Cell, alpha-betaReceptors, Cell SurfaceReceptors, Interleukin-2Signal TransductionThymus GlandT-LymphocytesTranscription FactorsConceptsT lineage commitmentT cell developmentHematopoietic stem cellsLineage commitmentCell developmentSrc homology 2 domainPre-T cell receptorBone marrowT cell-specific signalsBM transferT cellsCell-specific signalsMultipotent progenitor cellsDouble-positive T cellsTCR-beta transgeneLeukocyte proteinBM cell populationsFunction of Notch1T-cell leukemiaLater time pointsCD3 epsilonActive Notch1Beta transgeneBM cellsCell leukemiaNotch1 Regulates Maturation of CD4+ and CD8+ Thymocytes by Modulating TCR Signal Strength
Izon D, Punt J, Xu L, Karnell F, Allman D, Myung P, Boerth N, Pui J, Koretzky G, Pear W. Notch1 Regulates Maturation of CD4+ and CD8+ Thymocytes by Modulating TCR Signal Strength. Immunity 2001, 14: 253-264. PMID: 11290335, DOI: 10.1016/s1074-7613(01)00107-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDAntigens, Differentiation, T-LymphocyteCD4-Positive T-LymphocytesCD5 AntigensCD8-Positive T-LymphocytesCell DifferentiationDNA-Binding ProteinsFlow CytometryGene Expression RegulationHistocompatibility Antigens Class IHistocompatibility Antigens Class IIHumansJurkat CellsLectins, C-TypeLiverMembrane ProteinsMiceMice, TransgenicNFATC Transcription FactorsNuclear ProteinsPromoter Regions, GeneticReceptor, Notch1Receptors, Antigen, T-CellReceptors, Cell SurfaceResponse ElementsSignal TransductionThymus GlandTranscription Factor AP-1Transcription FactorsConceptsTCR signal strengthCell fate decisionsJurkat T cellsTCR-mediated signalingT cell developmentFate decisionsMultiple lineagesNotch signalingDevelopmental arrestCell developmentNotch expressionThymocyte developmentTCR stimulationRetroviral expressionT cellsPhysiological regulationSingle-positive T cellsTCR transgenic thymocytesDifferentiation of immatureTransgenic thymocytesNotch1Maturation of CD4SignalingMouse thymocytesThymocytes
2000
In vitro and in vivo macrophage function can occur independently of SLP-76
Myung PS, Clements JL, White DW, Malik ZA, Cowdery JS, Allen LH, Harty JT, Kusner DJ, Koretzky GA. In vitro and in vivo macrophage function can occur independently of SLP-76. International Immunology 2000, 12: 887-897. PMID: 10837416, DOI: 10.1093/intimm/12.6.887.Peer-Reviewed Original ResearchConceptsBone marrow-derived macrophagesFc gamma RWild-type miceGamma RT cellsMacrophage functionStable chronic infectionVivo macrophage functionDownstream mediatorWild-type bone marrow-derived macrophagesFc gamma R ligationCultured bone marrow-derived macrophagesMature T cellsMarrow-derived macrophagesOxygen intermediate productionPlatelet collagen receptorAcute phaseIL-12Chronic infectionMast cellsEffector functionsIFN-gammaPhagocytic functionFc gammaR stimulation