2024
Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer
Robles-Oteíza C, Hastings K, Choi J, Sirois I, Ravi A, Expósito F, de Miguel F, Knight J, López-Giráldez F, Choi H, Socci N, Merghoub T, Awad M, Getz G, Gainor J, Hellmann M, Caron É, Kaech S, Politi K. Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer. Journal Of Experimental Medicine 2024, 222: e20231106. PMID: 39585348, DOI: 10.1084/jem.20231106.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsNon-small cell lung cancerAcquired resistanceCheckpoint inhibitorsResistant tumorsPatients treated with anti-PD-1/PD-L1 therapyAnti-PD-1/PD-L1 therapyLung cancerResistance to immune checkpoint inhibitorsAssociated with decreased progression-free survivalHypoxia activated pro-drugsTargeting hypoxic tumor regionsTreat non-small cell lung cancerAnti-CTLA-4Anti-PD-1Immune checkpoint inhibitionTumor metabolic featuresProgression-free survivalCell lung cancerResistant cancer cellsHypoxic tumor regionsMHC-II levelsRegions of hypoxiaKnock-outCheckpoint inhibitionEP.07C.10 Real-World Outcomes of Patients Treated with Neoadjuvant Immunotherapy for Resectable Non-Small Cell Lung Cancer
Ermer T, Kim S, Goldberg S, Zolfaghari E, Blasberg J, Boffa D, Herbst R, Politi K, Schalper K, Dacic S, Woodard G. EP.07C.10 Real-World Outcomes of Patients Treated with Neoadjuvant Immunotherapy for Resectable Non-Small Cell Lung Cancer. Journal Of Thoracic Oncology 2024, 19: s543-s544. DOI: 10.1016/j.jtho.2024.09.1007.Peer-Reviewed Original ResearchChitinase 3-like-1 (CHI3L1) in the pathogenesis of epidermal growth factor receptor mutant non-small cell lung cancer
Kamle S, Ma B, Schor G, Bailey M, Pham B, Cho I, Khan H, Azzoli C, Hofstetter M, Sadanaga T, Herbst R, Politi K, Lee C, Elias J. Chitinase 3-like-1 (CHI3L1) in the pathogenesis of epidermal growth factor receptor mutant non-small cell lung cancer. Translational Oncology 2024, 49: 102108. PMID: 39178575, PMCID: PMC11388375, DOI: 10.1016/j.tranon.2024.102108.Peer-Reviewed Original ResearchNon-small cell lung cancerEpidermal growth factor receptorTyrosine kinase inhibitorsEpidermal growth factor receptor mutant non-small cell lung cancerMutant non-small cell lung cancerEpidermal growth factor receptor axisCell lung cancerLung cancerTherapeutic resistanceDownstream targets of EGFRResistance to TKI therapyEpithelial cellsStimulated epidermal growth factor receptorWild type epidermal growth factor receptorTargeting of epidermal growth factor receptorActivating EGFR mutationsChitinase 3-like 1Progression free survivalInduce tumor cell deathEpidermal growth factor receptor activationEffects of EGFR activationInhibited pulmonary metastasisTumor cell deathResponse to treatmentGrowth factor receptorAuthor Correction: Mechanisms and clinical activity of an EGFR and HER2 exon 20–selective kinase inhibitor in non–small cell lung cancer
Robichaux J, Elamin Y, Tan Z, Carter B, Zhang S, Liu S, Li S, Chen T, Poteete A, Estrada-Bernal A, Le A, Truini A, Nilsson M, Sun H, Roarty E, Goldberg S, Brahmer J, Altan M, Lu C, Papadimitrakopoulou V, Politi K, Doebele R, Wong K, Heymach J. Author Correction: Mechanisms and clinical activity of an EGFR and HER2 exon 20–selective kinase inhibitor in non–small cell lung cancer. Nature Medicine 2024, 30: 2694-2695. PMID: 39164519, DOI: 10.1038/s41591-024-03178-1.Peer-Reviewed Original ResearchOverexpression of Malat1 drives metastasis through inflammatory reprogramming of the tumor microenvironment
Martinez-Terroba E, Plasek-Hegde L, Chiotakakos I, Li V, de Miguel F, Robles-Oteiza C, Tyagi A, Politi K, Zamudio J, Dimitrova N. Overexpression of Malat1 drives metastasis through inflammatory reprogramming of the tumor microenvironment. Science Immunology 2024, 9: eadh5462. PMID: 38875320, DOI: 10.1126/sciimmunol.adh5462.Peer-Reviewed Original ResearchConceptsTumor microenvironmentLung adenocarcinomaMetastatic diseasePromoting metastatic diseaseGlobal chromatin accessibilityMetastasis-associated lung adenocarcinoma transcript 1Overexpression of MALAT1Lung adenocarcinoma transcript 1Lung adenocarcinoma metastasisCCL2 blockadeInflammatory reprogrammingEnhanced cell mobilityMacrophage depletionMechanism of actionTumor typesTumor progressionMouse modelCell mobilizationTumorLong noncoding RNAsParacrine secretionMetastasisCell linesTranscript 1MicroenvironmentComprehensive characterization of ERBB2 genomic alterations inlung cancer.
El Zarif T, Stockhammer P, Schillo J, Goldberg S, Politi K, Grant M. Comprehensive characterization of ERBB2 genomic alterations inlung cancer. Journal Of Clinical Oncology 2024, 42: 3148-3148. DOI: 10.1200/jco.2024.42.16_suppl.3148.Peer-Reviewed Original ResearchNon-small cell lung cancerProgression-free survivalShorter progression-free survivalTyrosine kinase domainSystemic therapyCo-mutationsClinical characteristics of non-small cell lung cancerCharacteristics of non-small cell lung cancerFirst-line platinum-based chemotherapyMedian tumor mutation burdenNon-small cell lung cancer tumorsFirst-line systemic therapyTP53 co-mutationsPlatinum-based chemotherapyTumor mutational burdenKaplan-Meier methodCell lung cancerLog-rank testOptimal treatment strategyHistory of smokingCopy number profilesTumor profile dataJuxtamembrane domainSquamous histologyTrastuzumab deruxtecanThe Evolution of Mouse Models of Cancer: Past, Present, and Future.
Abate-Shen C, Politi K. The Evolution of Mouse Models of Cancer: Past, Present, and Future. Cold Spring Harbor Perspectives In Medicine 2024, a041736. PMID: 38772706, DOI: 10.1101/cshperspect.a041736.Peer-Reviewed Original ResearchPlasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy in pancreatic ductal adenocarcinoma
Kim I, Diamond M, Yuan S, Kemp S, Kahn B, Li Q, Lin J, Li J, Norgard R, Thomas S, Merolle M, Katsuda T, Tobias J, Baslan T, Politi K, Vonderheide R, Stanger B. Plasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy in pancreatic ductal adenocarcinoma. Nature Communications 2024, 15: 1532. PMID: 38378697, PMCID: PMC10879147, DOI: 10.1038/s41467-024-46048-7.Peer-Reviewed Original ResearchConceptsPancreatic ductal adenocarcinomaEpithelial-to-mesenchymal transitionResistance to immunotherapyT cell killingDuctal adenocarcinomaAcquired resistance to immunotherapyResistance to cancer immunotherapyMouse model of pancreatic ductal adenocarcinomaModel of pancreatic ductal adenocarcinomaExpression of immune checkpointsInterferon regulatory factor 6Effect of TNF-aEMT transcription factor ZEB1Antigen presentation machineryTumor immune microenvironmentCell-intrinsic defectsPro-apoptotic effectsPresentation machineryCancer immunotherapyImmune checkpointsTumor relapseImmune microenvironmentPrimary resistanceT cellsAcquired resistanceASCL1 Drives Tolerance to Osimertinib in EGFR Mutant Lung Cancer in Permissive Cellular Contexts.
Hu B, Wiesehöfer M, de Miguel F, Liu Z, Chan L, Choi J, Melnick M, Arnal Estape A, Walther Z, Zhao D, Lopez-Giraldez F, Wurtz A, Cai G, Fan R, Gettinger S, Xiao A, Yan Q, Homer R, Nguyen D, Politi K. ASCL1 Drives Tolerance to Osimertinib in EGFR Mutant Lung Cancer in Permissive Cellular Contexts. Cancer Research 2024, 84: 1303-1319. PMID: 38359163, PMCID: PMC11142404, DOI: 10.1158/0008-5472.can-23-0438.Peer-Reviewed Original ResearchTyrosine kinase inhibitorsPatient-derived xenograftsEGFR mutant lung cancerMutant lung cancerPre-treatment tumorsResidual diseaseDrug toleranceLung cancerResidual tumor cells in vivoEGFR mutant lung adenocarcinomaTyrosine kinase inhibitor osimertinibEGFR tyrosine kinase inhibitorsTyrosine kinase inhibitor treatmentTumor cells in vivoMutant lung adenocarcinomaMaximal tumor regressionTranscription factor Ascl1Drug-tolerant cellsTime of maximal responseEvidence of cellsCells in vivoOsimertinib treatmentTumor regressionSingle cell transcriptional profilingTumor cellsPatient-Derived Models of Cancer in the NCI PDMC Consortium: Selection, Pitfalls, and Practical Recommendations
Habowski A, Budagavi D, Scherer S, Aurora A, Caligiuri G, Flynn W, Langer E, Brody J, Sears R, Foggetti G, Estape A, Nguyen D, Politi K, Shen X, Hsu D, Peehl D, Kurhanewicz J, Sriram R, Suarez M, Xiao S, Du Y, Li X, Navone N, Labanca E, Willey C. Patient-Derived Models of Cancer in the NCI PDMC Consortium: Selection, Pitfalls, and Practical Recommendations. Cancers 2024, 16: 565. PMID: 38339316, PMCID: PMC10854945, DOI: 10.3390/cancers16030565.Peer-Reviewed Original ResearchPatient-derived models of cancerPatient-derived modelsModels of cancerThe National Institutes of HealthCancer modelsNational Cancer Institute of the National Institutes of HealthPrecision medicine programsNational Institutes of HealthNational Cancer InstituteInstitutes of HealthPreclinical cancer modelsMedicine programsDivision of Cancer BiologyIn vitroIn vivo model systemsPractice recommendationsDevelopment of novel model systemsClinical practiceStudies of human pathologyNovel model systemsSeries of vignettesModel systemCancer therapeuticsCancer biologyCancerEGFR-driven lung adenocarcinomas coopt alveolar macrophage metabolism and function to support EGFR signaling and growth.
Kuhlmann-Hogan A, Cordes T, Xu Z, Kuna R, Traina K, Robles-Oteiza C, Ayeni D, Kwong E, Levy S, Globig A, Nobari M, Cheng G, Leibel S, Homer R, Shaw R, Metallo C, Politi K, Kaech S. EGFR-driven lung adenocarcinomas coopt alveolar macrophage metabolism and function to support EGFR signaling and growth. Cancer Discovery 2024, 14: 524-545. PMID: 38241033, PMCID: PMC11258210, DOI: 10.1158/2159-8290.cd-23-0434.Peer-Reviewed Original ResearchLung adenocarcinomaGM-CSFEGFR-mutant lung adenocarcinomaGM-CSF secretionProinflammatory immune responseSuppress tumor progressionLocal immunosuppressionStatin therapyTherapeutic combinationsNovel therapiesTumor cellsTumor progressionTumor growthLung adenocarcinoma cellsEGFR phosphorylationImmune responseTransformed epitheliumCancer cellsInflammatory functionsEGFR signalingMacrophage metabolismAlveolar macrophagesIncreased cholesterol synthesisMetabolic supportOncogenic signalingEGFR-Driven Lung Adenocarcinomas Co-opt Alveolar Macrophage Metabolism and Function to Support EGFR Signaling and Growth.
Kuhlmann-Hogan A, Cordes T, Xu Z, Kuna R, Traina K, Robles-Oteíza C, Ayeni D, Kwong E, Levy S, Globig A, Nobari M, Cheng G, Leibel S, Homer R, Shaw R, Metallo C, Politi K, Kaech S. EGFR-Driven Lung Adenocarcinomas Co-opt Alveolar Macrophage Metabolism and Function to Support EGFR Signaling and Growth. Cancer Discovery 2024, of1-of22. PMID: 38270272, DOI: 10.1158/2159-8290.cd-23-0434.Peer-Reviewed Original ResearchLung adenocarcinomaGM-CSFEGFR-mutant lung adenocarcinomaT cell-based immunotherapyTransformed epitheliumOncogenic signalingGM-CSF secretionProinflammatory immune responseSuppress tumor progressionLocal immunosuppressionStatin therapyTherapeutic combinationsNovel therapiesTumor cellsTumor progressionTumor growthLung cancerLung adenocarcinoma cellsEGFR phosphorylationImmune responseImmunological supportCancer cellsInflammatory functionsAlveolar macrophagesIncreased cholesterol synthesis
2023
1069 IL-12 mRNA monotherapy is effective in murine tumors resistant to checkpoint inhibition
Santha S, Lakshmipathi J, Li M, Qian Y, Luheshi N, Politi K, Bosenberg M, Eyles J, Muthusamy V. 1069 IL-12 mRNA monotherapy is effective in murine tumors resistant to checkpoint inhibition. 2023, a1176-a1176. DOI: 10.1136/jitc-2023-sitc2023.1069.Peer-Reviewed Original ResearchOncogenic context shapes the fitness landscape of tumor suppression
Blair L, Juan J, Sebastian L, Tran V, Nie W, Wall G, Gerceker M, Lai I, Apilado E, Grenot G, Amar D, Foggetti G, Do Carmo M, Ugur Z, Deng D, Chenchik A, Paz Zafra M, Dow L, Politi K, MacQuitty J, Petrov D, Winslow M, Rosen M, Winters I. Oncogenic context shapes the fitness landscape of tumor suppression. Nature Communications 2023, 14: 6422. PMID: 37828026, PMCID: PMC10570323, DOI: 10.1038/s41467-023-42156-y.Peer-Reviewed Original ResearchCo-Occurring Alterations in Multiple Tumor Suppressor Genes Are Associated With Worse Outcomes in Patients With EGFR-Mutant Lung Cancer
Stockhammer P, Grant M, Wurtz A, Foggetti G, Expósito F, Gu J, Zhao H, Choi J, Chung S, Li F, Walther Z, Dietz J, Duffield E, Gettinger S, Politi K, Goldberg S. Co-Occurring Alterations in Multiple Tumor Suppressor Genes Are Associated With Worse Outcomes in Patients With EGFR-Mutant Lung Cancer. Journal Of Thoracic Oncology 2023, 19: 240-251. PMID: 37806385, PMCID: PMC11364167, DOI: 10.1016/j.jtho.2023.10.001.Peer-Reviewed Original ResearchProgression-free survivalEGFR-mutant NSCLCTP53 mutationsOverall survivalClinical outcomesEGFR-TKIInferior outcomesWorse outcomesYale cohortMetastatic EGFR-mutant NSCLCShorter progression-free survivalEGFR-mutant lung cancerTyrosine kinase inhibitor therapyFirst-line TKIYale Cancer CenterSecond-line therapyInferior clinical outcomesSubset of patientsKinase inhibitor therapyAdditional therapeutic interventionsAggressive disease phenotypeCo-occurring alterationsTumor suppressor gene alterationsTumor genomic profilingMultiple tumor suppressor genesMammalian SWI/SNF chromatin remodeling complexes promote tyrosine kinase inhibitor resistance in EGFR-mutant lung cancer
de Miguel F, Gentile C, Feng W, Silva S, Sankar A, Exposito F, Cai W, Melnick M, Robles-Oteiza C, Hinkley M, Tsai J, Hartley A, Wei J, Wurtz A, Li F, Toki M, Rimm D, Homer R, Wilen C, Xiao A, Qi J, Yan Q, Nguyen D, Jänne P, Kadoch C, Politi K. Mammalian SWI/SNF chromatin remodeling complexes promote tyrosine kinase inhibitor resistance in EGFR-mutant lung cancer. Cancer Cell 2023, 41: 1516-1534.e9. PMID: 37541244, PMCID: PMC10957226, DOI: 10.1016/j.ccell.2023.07.005.Peer-Reviewed Original ResearchConceptsMammalian SWI/SNF chromatinSWI/SNF chromatinMSWI/SNF complexesGenome-wide localizationGene regulatory signaturesNon-genetic mechanismsEpithelial cell differentiationEGFR-mutant cellsChromatin accessibilitySNF complexCellular programsRegulatory signaturesTKI-resistant lung cancerGene targetsKinase inhibitor resistanceCell differentiationMesenchymal transitionTKI resistancePharmacologic disruptionTyrosine kinase inhibitor resistanceCell proliferationChromatinInhibitor resistanceEGFR-mutant lungKinase inhibitorsThe New NCI Precision Medicine Trials
Harris L, Blanke C, Erba H, Ford J, Gray R, LeBlanc M, Hu-Lieskovan S, Litzow M, Luger S, Meric-Bernstam F, O'Dwyer P, Othus M, Politi K, Shepherd L, Allegra C, Chen H, Ivy S, Korde L, Little R, McShane L, Moscow J, Patton D, Thurin M, Yee L, Doroshow J. The New NCI Precision Medicine Trials. Clinical Cancer Research 2023, 29: of1-of5. PMID: 37531248, PMCID: PMC10690084, DOI: 10.1158/1078-0432.ccr-23-0917.Peer-Reviewed Original ResearchAutologous humanized PDX modeling for immuno-oncology recapitulates features of the human tumor microenvironment
Chiorazzi M, Martinek J, Krasnick B, Zheng Y, Robbins K, Qu R, Kaufmann G, Skidmore Z, Juric M, Henze L, Brösecke F, Adonyi A, Zhao J, Shan L, Sefik E, Mudd J, Bi Y, Goedegebuure S, Griffith M, Griffith O, Oyedeji A, Fertuzinhos S, Garcia-Milian R, Boffa D, Detterbeck F, Dhanasopon A, Blasberg J, Judson B, Gettinger S, Politi K, Kluger Y, Palucka K, Fields R, Flavell R. Autologous humanized PDX modeling for immuno-oncology recapitulates features of the human tumor microenvironment. Journal For ImmunoTherapy Of Cancer 2023, 11: e006921. PMID: 37487666, PMCID: PMC10373695, DOI: 10.1136/jitc-2023-006921.Peer-Reviewed Original ResearchConceptsHuman tumor microenvironmentTumor microenvironmentTumor-immune interactionsSolid tumorsAdaptive immune activationAdaptive immune populationsIndividual tumor microenvironmentsPatient's hematopoietic systemPatient-derived xenograft tissuesVascular endothelial growth factorBone marrow hematopoietic stemBone marrow aspiratePreclinical drug testingEndothelial growth factorHematopoietic systemAutologous tumorPDX modelingPDX miceImmune activationImmune populationsMarrow aspiratesAutologous systemIndividual patientsLittermate controlsPreclinical predictionsPTEN Loss Confers Resistance to Anti-PD-1 Therapy in Non-Small Cell Lung Cancer by Increasing Tumor Infiltration of Regulatory T Cells.
Exposito F, Redrado M, Houry M, Hastings K, Molero-Abraham M, Lozano T, Solorzano J, Sanz-Ortega J, Adradas V, Amat R, Redin E, Leon S, Legarra N, Garcia J, Serrano D, Valencia K, Robles-Oteiza C, Foggetti G, Otegui N, Felip E, Lasarte J, Paz-Ares L, Zugazagoitia J, Politi K, Montuenga L, Calvo A. PTEN Loss Confers Resistance to Anti-PD-1 Therapy in Non-Small Cell Lung Cancer by Increasing Tumor Infiltration of Regulatory T Cells. Cancer Research 2023, 83: 2513-2526. PMID: 37311042, DOI: 10.1158/0008-5472.can-22-3023.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerLung squamous carcinomaAnti-PD-1 therapyRegulatory T cellsCell lung cancerImmunosuppressive microenvironmentLung cancerImmunotherapy resistanceT cellsWorse progression-free survivalCell death protein 1PTEN lossAnti-TGFβ antibodyConversion of CD4PI3K/AKT/mTOR pathwayProgression-free survivalDeath protein 1Treatment of miceImmunosuppressive tumor microenvironmentPTEN/PI3K/AKT/mTOR pathwayAKT/mTOR pathwayPD-L1TLR agonistsTumor rejectionSquamous carcinomaChallenges and opportunities for modeling aging and cancer
Anczuków O, Airhart S, Chuang J, Coussens L, Kuchel G, Korstanje R, Li S, Lucido A, McAllister S, Politi K, Polyak K, Ratliff T, Ren G, Trowbridge J, Ucar D, Palucka K. Challenges and opportunities for modeling aging and cancer. Cancer Cell 2023, 41: 641-645. PMID: 37001528, PMCID: PMC10185379, DOI: 10.1016/j.ccell.2023.03.006.Peer-Reviewed Original Research