2017
An Exportin-1–dependent microRNA biogenesis pathway during human cell quiescence
Martinez I, Hayes KE, Barr JA, Harold AD, Xie M, Bukhari SIA, Vasudevan S, Steitz JA, DiMaio D. An Exportin-1–dependent microRNA biogenesis pathway during human cell quiescence. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: e4961-e4970. PMID: 28584122, PMCID: PMC5488920, DOI: 10.1073/pnas.1618732114.Peer-Reviewed Original ResearchConceptsBiogenesis pathwayExportin 1Exportin-5Canonical miRNA biogenesis pathwayCanonical miRNA biogenesisTrimethylguanosine synthase 1MicroRNA biogenesis pathwayMiRNA biogenesis pathwayMiRNA processing pathwayStem cell biologyCellular growth arrestGroup of miRNAsExpression of miRNAsPrimary human fibroblastsMiRNA biogenesisPrimary miRNAsCellular quiescenceTissue homeostasisCell biologyProliferative arrestSpecific miRNAsCell quiescenceGrowth arrestBiogenesisMiRNAsSettling the m6A debate: methylation of mature mRNA is not dynamic but accelerates turnover
Rosa-Mercado NA, Withers JB, Steitz JA. Settling the m6A debate: methylation of mature mRNA is not dynamic but accelerates turnover. Genes & Development 2017, 31: 957-958. PMID: 28637691, PMCID: PMC5495124, DOI: 10.1101/gad.302695.117.Peer-Reviewed Original ResearchMeSH KeywordsAdenosineAnimalsExonsHeLa CellsHumansMethylationMethyltransferasesRNA SplicingRNA, MessengerConceptsPre-mRNA splicing eventsPost-transcriptional modificationsMRNA biogenesisDifferent subcellular fractionsMRNA biologySplicing eventsMature mRNABiochemical approachesRNA transcriptsPivotal regulatorMethylation levelsHeLa cellsSubcellular fractionsRNA nucleosidesMethylationTranscriptsBiogenesisChromatinSplicingMethyladenosineExonsGenesRNABiologyRegulator
2016
Fluorescence Amplification Method for Forward Genetic Discovery of Factors in Human mRNA Degradation
Alexandrov A, Shu MD, Steitz JA. Fluorescence Amplification Method for Forward Genetic Discovery of Factors in Human mRNA Degradation. Molecular Cell 2016, 65: 191-201. PMID: 28017590, PMCID: PMC5301997, DOI: 10.1016/j.molcel.2016.11.032.Peer-Reviewed Original ResearchConceptsNonsense-mediated decayPremature termination codonNMD factorsNMD pathwayMRNA degradationHuman cellsForward genetic screeningGenetic screen identifiesHuman genetic diseasesHuman candidate genesNonsense suppression therapyModel organismsGenetic screeningScreen identifiesTermination codonCandidate genesGenetic discoveriesReporter fluorescenceGenetic diseasesPathwayAdditional key factorsCellsCRISPRCodonHomologyMethyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA
Brown JA, Kinzig CG, DeGregorio SJ, Steitz JA. Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 14013-14018. PMID: 27872311, PMCID: PMC5150381, DOI: 10.1073/pnas.1614759113.Peer-Reviewed Original ResearchConceptsGel shift assaysMetastasis-associated lung adenocarcinoma transcript 1RNA triple helicesPutative RNA methyltransferaseCompetitive gel shift assaysRNA-protein interactionsRNA stability elementAbundant nuclear proteinNative gel shift assaysRich internal loopSitu proximity ligation assayTriple helixHEK293T cell lysatesStem-loop structureProximity ligation assayT cell lysatesRNA methyltransferaseVivo UVNucleotide compositionNuclear proteinsLung adenocarcinoma transcript 1RNA immunoprecipitationStability elementMETTL16Rich tractA proximity-dependent assay for specific RNA–protein interactions in intact cells
Zhang W, Xie M, Shu MD, Steitz JA, DiMaio D. A proximity-dependent assay for specific RNA–protein interactions in intact cells. RNA 2016, 22: 1785-1792. PMID: 27659050, PMCID: PMC5066630, DOI: 10.1261/rna.058248.116.Peer-Reviewed Original ResearchMeSH KeywordsCell CompartmentationHEK293 CellsHeLa CellsHumansRNA, Small NuclearRNA-Binding ProteinsConceptsRNA-protein interactionsSpecific RNA-protein interactionsProximity ligation assayTarget RNAProtein-protein interactionsSame cellular compartmentCellular compartmentsRNA targetsIntact cellsLigation assayRNADiscrete compartmentsProteinDNA oligonucleotideFluorescent signalOligonucleotide complementaryCellsCompartmentsAssaysColocalizationHigh specificityInteractionStaining methodOligonucleotideAdaptation
2015
The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3′ ends
Xie M, Zhang W, Shu MD, Xu A, Lenis DA, DiMaio D, Steitz JA. The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3′ ends. Genes & Development 2015, 29: 1552-1564. PMID: 26220997, PMCID: PMC4526738, DOI: 10.1101/gad.266973.115.Peer-Reviewed Original ResearchConceptsEnd processing signalsSmall nuclear RNAProximity ligation assayEnd processingPre-miRNAsHerpesvirus saimiriPre-miRNA hairpinsRNA-protein interactionsSitu proximity ligation assayIntegrator complexMiRNA 3MiRNA biogenesisSnRNA 3Primary miRNAMiRNA hairpinsIntegrator activityNuclear RNASequence downstreamOncogenic γ-herpesvirusesRescue experimentsLigation assayVivo knockdownComplex actsΓ-herpesvirusesHairpin
2013
Phosphorylation of DGCR8 Increases Its Intracellular Stability and Induces a Progrowth miRNA Profile
Herbert KM, Pimienta G, DeGregorio SJ, Alexandrov A, Steitz JA. Phosphorylation of DGCR8 Increases Its Intracellular Stability and Induces a Progrowth miRNA Profile. Cell Reports 2013, 5: 1070-1081. PMID: 24239349, PMCID: PMC3892995, DOI: 10.1016/j.celrep.2013.10.017.Peer-Reviewed Original ResearchConceptsMicroprocessor complexRNA-binding proteinRNase III enzymeInhibition of phosphatasesStem-loop structureERK/MAPKSpecific processing activityMiRNA expression profilesExtracellular cuesMiRNA biogenesisDrosha proteinPhosphorylation sitesPrimary miRNAMammalian cellsProtein stabilityExpression profilesDGCR8Intracellular stabilityHeLa cellsCellular levelMiRNA profilesPhosphorylationMRNA levelsProteinCells
2012
Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay
Alexandrov A, Colognori D, Shu MD, Steitz JA. Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 21313-21318. PMID: 23236153, PMCID: PMC3535618, DOI: 10.1073/pnas.1219725110.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceCarrier ProteinsEukaryotic Initiation Factor-4AEukaryotic Initiation Factor-4GExonsGene Knockdown TechniquesHEK293 CellsHeLa CellsHumansMolecular Sequence DataMutationNonsense Mediated mRNA DecayNuclear ProteinsPeptidylprolyl IsomeraseProtein BindingRNA SplicingRNA, MessengerRNA-Binding ProteinsSpliceosomesConceptsExon junction complexEJC depositionMultiprotein exon junction complexNonsense-mediated decay pathwayNonsense-mediated decaySpecific roleEJC assemblyEJC formationComplex eukaryotesDisrupts associationMetazoan mRNAsSpliceosomal proteinsCellular mRNAsHost genesSplicing defectsJunction complexDownstream eventsSplicingNatural substrateDecay pathwaysCWC22Depletion yieldsNMDMutationsMRNA
2010
miR-29 and miR-30 regulate B-Myb expression during cellular senescence
Martinez I, Cazalla D, Almstead LL, Steitz JA, DiMaio D. miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 108: 522-527. PMID: 21187425, PMCID: PMC3021067, DOI: 10.1073/pnas.1017346108.Peer-Reviewed Original ResearchConceptsB-myb expressionCellular senescenceMiR-30MiR-29Reporter constructsEndogenous B-MybMajor tumor suppressor mechanismTumor suppressor mechanismIrreversible growth arrestMicroRNA familiesMutant 3'UTRCellular DNA synthesisB-MybReplicative senescenceCompensatory mutationsGrowth arrestMutant sitesRb pathwaySenescenceSuppressor mechanismDNA synthesisRepressionInhibits senescenceExpressionMutations
2009
A Conserved WD40 Protein Binds the Cajal Body Localization Signal of scaRNP Particles
Tycowski KT, Shu MD, Kukoyi A, Steitz JA. A Conserved WD40 Protein Binds the Cajal Body Localization Signal of scaRNP Particles. Molecular Cell 2009, 34: 47-57. PMID: 19285445, PMCID: PMC2700737, DOI: 10.1016/j.molcel.2009.02.020.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAnimalsBase SequenceCell LineChromatography, AffinityCoiled BodiesDrosophila melanogasterDrosophila ProteinsHeLa CellsHumansMolecular Sequence DataNucleic Acid ConformationRecombinant Fusion ProteinsRegulatory Sequences, Ribonucleic AcidRibonucleoproteinsRNA-Binding ProteinsSequence AlignmentConceptsCAB boxCB localizationSmall Cajal bodyWD40 proteinsRNP functionCajal bodiesLocalization signalACA motifDomain RNATelomerase RNAHuman homologPosttranscriptional modificationsSmall nuclearWDR79ScaRNAsRNA elementsCentral playerUV crosslinkNuclear RNPCore proteinRNAProteinAdditional interactionsBindingLocalizationSubnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: Processing at transcription sites or accumulation in SC35 foci
Pawlicki JM, Steitz JA. Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: Processing at transcription sites or accumulation in SC35 foci. Cell Cycle 2009, 8: 345-356. PMID: 19177009, PMCID: PMC3004524, DOI: 10.4161/cc.8.3.7494.Peer-Reviewed Original ResearchConceptsPri-miRNA processingPri-miRNAsTranscription sitesPrimary miRNA transcriptsPri-miRNA transcriptsPre-miRNA hairpinsRNA polymerase IIASF/SF2Splicing factor SC35Target messenger RNAsNumber of proteinsMiRNA biogenesisMiRNA transcriptsNuclear organizationMRNA metabolismPolymerase IINuclear fociProlyl isomeraseFactor SC35Subnuclear compartmentalizationPri-microRNAsMammalian cellsSC35 domainsGene expressionSC35
2008
Flexibility in the site of exon junction complex deposition revealed by functional group and RNA secondary structure alterations in the splicing substrate
Mishler DM, Christ AB, Steitz JA. Flexibility in the site of exon junction complex deposition revealed by functional group and RNA secondary structure alterations in the splicing substrate. RNA 2008, 14: 2657-2670. PMID: 18952819, PMCID: PMC2590960, DOI: 10.1261/rna.1312808.Peer-Reviewed Original ResearchConceptsExon junction complexRNA secondary structureEJC depositionSplicing substrateMammalian nonsense-mediated mRNA decayNonsense-mediated mRNA decaySecondary structureStretches of DNATranslational regulationMRNA decayCoimmunoprecipitation assaysJunction complexSecondary structure alterationsDNA nucleotidesStructure alterationsH protectionUpstream shiftToeprintingExonsSitesNucleotidesDNACrystal structureDeposition sitesMRNAConserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′‐end maturation
Kolev NG, Yario TA, Benson E, Steitz JA. Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′‐end maturation. EMBO Reports 2008, 9: 1013-1018. PMID: 18688255, PMCID: PMC2572124, DOI: 10.1038/embor.2008.146.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceBase SequenceCell LineCleavage And Polyadenylation Specificity FactorConserved SequenceEndonucleasesEnzyme ActivationHeLa CellsHistonesHumansMolecular Sequence DataProtein Structure, TertiaryProtein SubunitsRNA 3' End ProcessingRNA PrecursorsRNA, MessengerConceptsPre-messenger RNAPolyadenylation specificity factorMammalian proteinsRNase ZConserved motifsHistone mRNASpecificity factorEndonucleolytic cleavageActive endonucleaseEndonuclease activityMBL familyComplex machineryMessenger RNAPoint mutationsCPSF73CPSF100Process of maturationMaturation processRNAProteinMotifMRNAMaturationEukaryotesCleavagePrimary microRNA transcript retention at sites of transcription leads to enhanced microRNA production
Pawlicki JM, Steitz JA. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. Journal Of Cell Biology 2008, 182: 61-76. PMID: 18625843, PMCID: PMC2447899, DOI: 10.1083/jcb.200803111.Peer-Reviewed Original ResearchMeSH KeywordsChromatinExonsHeLa CellsHumansIntronsMicroRNAsMRNA Cleavage and Polyadenylation FactorsNuclear ProteinsPolyadenylationRegulatory Sequences, Nucleic AcidRibonucleoproteinsRNA Polymerase IIIRNA Processing, Post-TranscriptionalRNA TransportRNA, MessengerRNA, ViralSequence DeletionSerine-Arginine Splicing FactorsSubcellular FractionsTranscription, GeneticConceptsPri-miRNAsTranscription sitesEndogenous pri-miRNAsPrimary miRNA transcriptsPri-miRNA processingSplicing factor SC35Viral RNA elementsHigh nuclear levelsMiRNA biogenesisMiRNA transcriptionMiRNA transcriptsNuclear stepsPrecursor miRNAsNuclear fociFactor SC35MicroRNA productionRNA elementsGene expressionTranscription leadNuclear fractionNuclear levelsTranscriptionMiRNAsProcessing signalsBiogenesis
2007
Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation
Vasudevan S, Tong Y, Steitz JA. Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science 2007, 318: 1931-1934. PMID: 18048652, DOI: 10.1126/science.1149460.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsArgonaute ProteinsBase PairingCell CycleCell LineCell ProliferationComputational BiologyEukaryotic Initiation Factor-2Gene Expression RegulationHeLa CellsHMGA2 ProteinHumansInterphaseMicroRNAsProtein BiosynthesisRibonucleoproteinsRNA, MessengerRNA-Binding ProteinsTransfectionTumor Necrosis Factor-alphaUp-RegulationConceptsAU-rich elementsCell cycle arrestCycle arrestUntranslated regionMental retardation-related protein 1MicroRNA target sitesMicroRNA let-7Messenger RNA (mRNA) 3' untranslated regionsRegulates TranslationTranslation regulationTarget mRNAsGene expressionCell cycleCommon functionProtein 1ArgonauteTarget siteActivation signalsRepressionTumor necrosis factor-alpha mRNAMRNARegulationActivationArrestMicroRNPsU2 snRNP Binds Intronless Histone Pre-mRNAs to Facilitate U7-snRNP-Dependent 3′ End Formation
Friend K, Lovejoy AF, Steitz JA. U2 snRNP Binds Intronless Histone Pre-mRNAs to Facilitate U7-snRNP-Dependent 3′ End Formation. Molecular Cell 2007, 28: 240-252. PMID: 17964263, PMCID: PMC2149891, DOI: 10.1016/j.molcel.2007.09.026.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCell NucleusDEAD-box RNA HelicasesHeLa CellsHistonesHumansIntronsMiceModels, MolecularOocytesProtein ConformationRibonucleoprotein, U2 Small NuclearRibonucleoprotein, U7 Small NuclearRibonucleoproteins, Small NuclearRNA 3' End ProcessingRNA PrecursorsRNA, MessengerRNA-Binding ProteinsTime FactorsXenopus laevisMutational analysis of a viral RNA element that counteracts rapid RNA decay by interaction with the polyadenylate tail
Conrad NK, Shu MD, Uyhazi KE, Steitz JA. Mutational analysis of a viral RNA element that counteracts rapid RNA decay by interaction with the polyadenylate tail. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 10412-10417. PMID: 17563387, PMCID: PMC1965527, DOI: 10.1073/pnas.0704187104.Peer-Reviewed Original ResearchTarget mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR
Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 9667-9672. PMID: 17535905, PMCID: PMC1887587, DOI: 10.1073/pnas.0703820104.Peer-Reviewed Original ResearchConceptsInternal ribosome entry siteTarget mRNAsMiRNA-mediated repressionRepression of translationLuciferase reporter mRNAMiRNA target sitesInitiation of translationMiRNA-binding sitesHuman HeLa cellsRibosome entry siteMicroRNA-binding sitesLet-7 complementary sitesHuman Ago2Reporter mRNAMicroRNAs (miRNAs) bindEndogenous mRNATranslational efficiencyLet-7a miRNAUTRProtein synthesisDNA transfectionComplementary sitesHeLa cellsEntry siteTarget site
2006
A Spliceosomal Intron Binding Protein, IBP160, Links Position-Dependent Assembly of Intron-Encoded Box C/D snoRNP to Pre-mRNA Splicing
Hirose T, Ideue T, Nagai M, Hagiwara M, Shu MD, Steitz JA. A Spliceosomal Intron Binding Protein, IBP160, Links Position-Dependent Assembly of Intron-Encoded Box C/D snoRNP to Pre-mRNA Splicing. Molecular Cell 2006, 23: 673-684. PMID: 16949364, DOI: 10.1016/j.molcel.2006.07.011.Peer-Reviewed Original ResearchEpstein-Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling
Fok V, Friend K, Steitz JA. Epstein-Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling. Journal Of Cell Biology 2006, 173: 319-325. PMID: 16682524, PMCID: PMC2063832, DOI: 10.1083/jcb.200601026.Peer-Reviewed Original ResearchMeSH KeywordsActive Transport, Cell NucleusAnimalsAntibiotics, AntineoplasticAutoantigensCell LineCell Line, TumorCell NucleusDactinomycinFatty Acids, UnsaturatedFemaleHeLa CellsHerpesvirus 4, HumanHumansKaryopherinsMiceNIH 3T3 CellsOocytesProtein BindingRibonucleoproteinsRNA TransportRNA, UntranslatedRNA, ViralXenopus laevis