1987
Chapter 8 Ionic channel organization of normal and regenerating mammalian axons
Kocsis J, Waxman S. Chapter 8 Ionic channel organization of normal and regenerating mammalian axons. Progress In Brain Research 1987, 71: 89-101. PMID: 2438722, DOI: 10.1016/s0079-6123(08)61816-6.Peer-Reviewed Original ResearchConceptsNerve fibersPeripheral nervesRegenerated nerve fibersCell remodellingNormal developmentMammalian nerve fibresSchwann cellsElectrophysiological characteristicsFine caliberMyelinated axonsImmature axonsAxonal growthMammalian axonsNerveNormal maturationRemodelling occursAxonsCell arrestRemodellingTime courseMyelinIonic channelsLong termMaturationTime of maturation
1983
ELECTROPHYSIOLOGY OF CONDUCTION IN MAMMALIAN REGENERATING NERVES11This work was supported in part by the Veterans Administration and by grants from the National Institutes of Health and the National Multiple Sclerosis Society.
Kocsis J, Waxman S. ELECTROPHYSIOLOGY OF CONDUCTION IN MAMMALIAN REGENERATING NERVES11This work was supported in part by the Veterans Administration and by grants from the National Institutes of Health and the National Multiple Sclerosis Society. 1983, 89-107. DOI: 10.1016/b978-0-12-635120-0.50010-2.Peer-Reviewed Original ResearchMyelinated axonsAction potentialsNational Multiple Sclerosis SocietyMultiple Sclerosis SocietyIntra-axonal recordingsEarly regenerating fibersNormal myelinated axonsRegenerating fibersPharmacological blockageBurst activityPotassium conductanceAxonsVeterans AdministrationNational InstituteRegenerated fibersRepolarizationFunctional organizationIonic channelsRatsAdministrationMyelin