Skip to Main Content

Shaul Yogev, PhD

Associate Professor of Neuroscience and of Cell Biology
DownloadHi-Res Photo

About

Titles

Associate Professor of Neuroscience and of Cell Biology

Biography

Shaul got his BSc and MSc from Paris VII University in France, and his PhD from the Weizmann Institute in Israel, where he studied EGFR signaling with Benny Shilo. As a postdoc with Kang Shen at Stanford he developed imaging tools that enable using forward genetic approaches to study neuronal microtubules and axonal transport in live animals with single cell resolution.

The lab is interested in neuronal cell biology. We want to understand how the architecture of the neuronal cytoskeleton is established and how it supports polarized traffic in order to maintain structures such as synapses, which are found at a large distance from the cell body, over the lifetime of a neuron.

Appointments

Education & Training

PhD
Weizmann Institute of Science, Molecular Genetics

Research

Overview

Neurons are among the largest, most polarized cells in our bodies. The ability to precisely deliver cellular organelles such as synaptic vesicles or RNA particles to remote locations in axons and dendrites is fundamental for neurons to efficiently receive and propagate information. This long-range transport is carried out by molecular motors moving on cytoskeletal tracks, and is crucial for maintaining the composition of synapses over the lifetime of a neuron.

We are interested in the cell biological mechanisms that neurons employ to establish microtubule tracks and maintain the distribution of their organelles via polarized cargo transport. For example:

-How are microtubule tracks nucleated and patterned in axons and dendrites? How are their length, number and orientation optimized for transport in different neurons?

-How do molecular motors navigate their way on microtubule tracks to pick up and unload cargo at precise locations?

-What are the cues that determine the steady state localization of cargo such as RNA particles?

We established imaging and image analysis tools that allow us to study the organization of the cytoskeleton and overlying transport of cargo in live animals with high resolution in single cells. We use the nematode C. elegans for these studies because of its transparent body and its amenability to forward genetic approaches. The conservation of the basic cellular machinery between C. elegans and mammalian neurons allows us to use this simple model to gain insight into fundamental processes that occur in neurons of higher organisms. Because defective microtubule dependent transport is a hallmark of neurodegeneration, we hope that these insights will also help us understand the relevant mechanisms of cellular dysfunction.

Medical Subject Headings (MeSH)

Axonal Transport; Cell Biology; Cytoskeleton; Motor Neuron Disease; Neurons; Synapses

Research at a Glance

Yale Co-Authors

Frequent collaborators of Shaul Yogev's published research.

Publications

2024

2023

2021

2017

2016

2014

2010

Academic Achievements & Community Involvement

  • honor

    Human Frontiers Fellowship

  • honor

    Haim Holzman memorial prize for academic excellence and scientific accomplishments

Get In Touch

Contacts

Events

May 202512Monday