2020
Human Amniotic Membrane as a Novel Scaffold for Induced Pluripotent Stem Cell-Derived Kidney Organoids
Figetakis M, James K, Torres R, Chang W. Human Amniotic Membrane as a Novel Scaffold for Induced Pluripotent Stem Cell-Derived Kidney Organoids. Journal Of The American Society Of Nephrology 2020, 31: 145-145. DOI: 10.1681/asn.20203110s1145a.Peer-Reviewed Original ResearchDifferential functional roles of fibroblasts and pericytes in the formation of tissue-engineered microvascular networks in vitro
Kosyakova N, Kao DD, Figetakis M, López-Giráldez F, Spindler S, Graham M, James KJ, Won Shin J, Liu X, Tietjen GT, Pober JS, Chang WG. Differential functional roles of fibroblasts and pericytes in the formation of tissue-engineered microvascular networks in vitro. Npj Regenerative Medicine 2020, 5: 1. PMID: 31934351, PMCID: PMC6944695, DOI: 10.1038/s41536-019-0086-3.Peer-Reviewed Original Research
2019
NSAID associated bilateral renal infarctions: a case report
Jeon Y, Lis JB, Chang WG. NSAID associated bilateral renal infarctions: a case report. International Journal Of Nephrology And Renovascular Disease 2019, 12: 177-181. PMID: 31447577, PMCID: PMC6682756, DOI: 10.2147/ijnrd.s212010.Peer-Reviewed Case Reports and Technical NotesNon-steroidal anti-inflammatory drugsRenal infarctionAnti-inflammatory drugsHigh-dose non-steroidal anti-inflammatory drugsRenal arterial blood flowBilateral renal infarctionYear old womanArterial blood flowPresence of NSAIDsNSAID useRenovascular vasoconstrictionRenal injuryVasoconstrictive effectRenal perfusionCase reportHigh prevalenceOlder womenBlood flowInfarctionCausative agentDrugsHypoperfusionVasoconstrictionPatientsInjuryTools for Kidney Tissue Engineering: Bioreactor Systems, Scaffolds, and Cell Sources
Chang WG. Tools for Kidney Tissue Engineering: Bioreactor Systems, Scaffolds, and Cell Sources. In R. L. Reis, & M. E. Gomes (Eds.), Encyclopedia of Tissue Engineering and Regenerative Medicine, Vol. 1 (pp. 199–208). Academic Press: Elsevier. (2019).Books
2017
A short discourse on vascular tissue engineering
Chang WG, Niklason LE. A short discourse on vascular tissue engineering. Npj Regenerative Medicine 2017, 2: 7. PMID: 29057097, PMCID: PMC5649630, DOI: 10.1038/s41536-017-0011-6.Books
2016
ISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction
Bartulos O, Zhuang ZW, Huang Y, Mikush N, Suh C, Bregasi A, Wang L, Chang W, Krause DS, Young LH, Pober JS, Qyang Y. ISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction. JCI Insight 2016, 1: e80920. PMID: 27525311, PMCID: PMC4982472, DOI: 10.1172/jci.insight.80920.Peer-Reviewed Original ResearchMyocardial infarctionControl animalsCardiovascular progenitor cellsProgenitor cellsVentricular contractile functionCardiac repair strategiesNew blood vesselsInfarct areaLineage-tracing studiesContractile functionCardiac repairBlood vessel formationMyocardial regenerationEndothelial cellsHeart tissueBlood vesselsMurine heartInfarctionVessel formationInjuryMiceDelivery approachCardiomyocytesHeartCellsBlocking MHC class II on human endothelium mitigates acute rejection
Abrahimi P, Qin L, Chang WG, Bothwell AL, Tellides G, Saltzman WM, Pober JS. Blocking MHC class II on human endothelium mitigates acute rejection. JCI Insight 2016, 1: e85293. PMID: 26900601, PMCID: PMC4756651, DOI: 10.1172/jci.insight.85293.Peer-Reviewed Original ResearchClass II MHC moleculesCytotoxic T lymphocytesII MHC moleculesClass I MHC moleculesMHC moleculesI MHC moleculesEndothelial cellsAcute rejectionT cellsEffector memory T cellsT cell-mediated destructionAcute allograft rejectionCell-mediated destructionGraft endothelial cellsMemory T cellsAlloreactive cytotoxic T lymphocytesExperimental rodent modelsMajor histocompatibility complex moleculesSecondary lymphoid organsMHC class IIClass I major histocompatibility complex moleculesAllogeneic human lymphocytesHistocompatibility complex moleculesPrevents CD4Artery graft
2015
Tissue-Engineered Microvasculature to Reperfuse Isolated Renal Glomeruli
Chang WG, Fornoni A, Tietjen G, Mendez JJ, Niklason LE, Saltzman WM, Pober JS. Tissue-Engineered Microvasculature to Reperfuse Isolated Renal Glomeruli. Tissue Engineering Part A 2015, 21: 2673-2679. PMID: 26414101, PMCID: PMC4652181, DOI: 10.1089/ten.tea.2015.0060.Peer-Reviewed Original ResearchEfficient Gene Disruption in Cultured Primary Human Endothelial Cells by CRISPR/Cas9
Abrahimi P, Chang WG, Kluger MS, Qyang Y, Tellides G, Saltzman WM, Pober JS. Efficient Gene Disruption in Cultured Primary Human Endothelial Cells by CRISPR/Cas9. Circulation Research 2015, 117: 121-128. PMID: 25940550, PMCID: PMC4490936, DOI: 10.1161/circresaha.117.306290.Peer-Reviewed Original ResearchAnimalsCD4-Positive T-LymphocytesCell SeparationCells, CulturedCRISPR-Cas SystemsEndothelial Progenitor CellsFemaleFetal BloodGene DeletionGene Knockout TechniquesGenes, MHC Class IIGenetic VectorsHLA-DR AntigensHumansIntracellular Signaling Peptides and ProteinsLentivirusLymphocyte ActivationLymphocyte Culture Test, MixedMiceMice, SCIDNuclear ProteinsPrimary Cell CultureProteinsTetracyclineTrans-ActivatorsVesicular Transport Proteins
2013
Sustained delivery of proangiogenic microRNA‐132 by nanoparticle transfection improves endothelial cell transplantation
Devalliere J, Chang WG, Andrejecsk JW, Abrahimi P, Cheng CJ, Jane‐wit D, Saltzman WM, Pober JS. Sustained delivery of proangiogenic microRNA‐132 by nanoparticle transfection improves endothelial cell transplantation. The FASEB Journal 2013, 28: 908-922. PMID: 24221087, PMCID: PMC3898640, DOI: 10.1096/fj.13-238527.Peer-Reviewed Original ResearchConceptsHuman umbilical vein ECsEndothelial cellsMiR-132MicroRNA-132Cultured human umbilical vein endothelial cellsNumber of microvesselsGrowth factor-induced proliferationHuman umbilical vein endothelial cellsUmbilical vein endothelial cellsEndothelial cell transplantationCultured endothelial cellsEndogenous growth factorsEC transplantationVein endothelial cellsCell transplantationImmunodeficient miceTissue perfusionTransplantationMiR deliveryGrowth factorIntegrin αvβ3Endocytosed nanoparticlesSquare millimeterBiological effectsControl transfectionPericytes modulate endothelial sprouting
Chang WG, Andrejecsk JW, Kluger MS, Saltzman WM, Pober JS. Pericytes modulate endothelial sprouting. Cardiovascular Research 2013, 100: 492-500. PMID: 24042014, PMCID: PMC3826704, DOI: 10.1093/cvr/cvt215.Peer-Reviewed Original ResearchMeSH KeywordsBecaplerminCoculture TechniquesCulture Media, ConditionedHepatocyte Growth FactorHuman Umbilical Vein Endothelial CellsHumansMicrovesselsNeovascularization, PhysiologicParacrine CommunicationPericytesProto-Oncogene Proteins c-bcl-2Proto-Oncogene Proteins c-sisSignal TransductionSpheroids, CellularTime FactorsTransfectionVascular Endothelial Growth Factor AParacrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel
Andrejecsk JW, Cui J, Chang WG, Devalliere J, Pober JS, Saltzman WM. Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel. Biomaterials 2013, 34: 8899-8908. PMID: 23973174, PMCID: PMC3839675, DOI: 10.1016/j.biomaterials.2013.08.008.Peer-Reviewed Original ResearchConceptsHuman umbilical vein endothelial cellsParacrine signalsFunctioning of tissuesProper survivalEndothelial cellsUmbilical vein endothelial cellsMolecular signalsRegulated deliveryVein endothelial cellsVessel-like structuresLiving cellsProtein gelsHepatocyte growth factorTherapeutic proteinsParacrine exchangesGrowth factorMicrovascular pericytesProteinAngiogenic proteinsCellsVascular tissue engineeringHUVEC behaviorTissue constructsPericytesLocal environmentIn vitro Self-Assembly of Human Pericyte-Supported Endothelial Microvessels in Three-Dimensional Coculture: A Simple Model for Interrogating Endothelial-Pericyte Interactions
Waters JP, Kluger MS, Graham M, Chang WG, Bradley JR, Pober JS. In vitro Self-Assembly of Human Pericyte-Supported Endothelial Microvessels in Three-Dimensional Coculture: A Simple Model for Interrogating Endothelial-Pericyte Interactions. Journal Of Vascular Research 2013, 50: 324-331. PMID: 23860328, PMCID: PMC3879598, DOI: 10.1159/000353303.Peer-Reviewed Original ResearchApoptosisCell CommunicationCell MovementCells, CulturedCoculture TechniquesCollagenEndothelial CellsFibronectinsHuman Umbilical Vein Endothelial CellsHumansIntercellular JunctionsMicrovesselsNeovascularization, PhysiologicPericytesPolyglycolic AcidPolymerizationProto-Oncogene Proteins c-bcl-2Time FactorsTransduction, GeneticTransfection
2012
Controlled protein delivery in the generation of microvascular networks
Andrejecsk JW, Chang WG, Pober JS, Saltzman WM. Controlled protein delivery in the generation of microvascular networks. Drug Delivery And Translational Research 2012, 5: 75-88. PMID: 25767747, PMCID: PMC4354697, DOI: 10.1007/s13346-012-0122-y.Peer-Reviewed Original ResearchGDP-Mannose-4,6-Dehydratase Is a Cytosolic Partner of Tankyrase 1 That Inhibits Its Poly(ADP-Ribose) Polymerase Activity
Bisht KK, Dudognon C, Chang WG, Sokol ES, Ramirez A, Smith S. GDP-Mannose-4,6-Dehydratase Is a Cytosolic Partner of Tankyrase 1 That Inhibits Its Poly(ADP-Ribose) Polymerase Activity. Molecular And Cellular Biology 2012, 32: 3044-3053. PMID: 22645305, PMCID: PMC3434517, DOI: 10.1128/mcb.00258-12.Peer-Reviewed Original Research
2007
Protein requirements for sister telomere association in human cells
Canudas S, Houghtaling BR, Kim JY, Dynek JN, Chang WG, Smith S. Protein requirements for sister telomere association in human cells. The EMBO Journal 2007, 26: 4867-4878. PMID: 17962804, PMCID: PMC2099466, DOI: 10.1038/sj.emboj.7601903.Peer-Reviewed Original ResearchCell Cycle ProteinsCentrifugation, Density GradientChromosomal Proteins, Non-HistoneGene Expression Regulation, NeoplasticHeLa CellsHumansImmunoprecipitationIn Situ Hybridization, FluorescenceMitosisModels, BiologicalNuclear ProteinsPoly(ADP-ribose) PolymerasesProtein BindingTankyrasesTelomereTelomere-Binding ProteinsTelomeric Repeat Binding Protein 1
2005
NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis
Chang W, Dynek JN, Smith S. NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochemical Journal 2005, 391: 177-184. PMID: 16076287, PMCID: PMC1276914, DOI: 10.1042/bj20050885.Peer-Reviewed Original Research
2004
Impact of E1a Modifications on Tumor-Selective Adenoviral Replication and Toxicity
Sauthoff H, Pipiya T, Heitner S, Chen S, Bleck B, Reibman J, Chang W, Norman RG, Rom WN, Hay JG. Impact of E1a Modifications on Tumor-Selective Adenoviral Replication and Toxicity. Molecular Therapy 2004, 10: 749-757. PMID: 15451459, DOI: 10.1016/j.ymthe.2004.07.014.Peer-Reviewed Original ResearchConceptsS-phase inductionN-terminusNormal cellsCancer cellsE1A deletion mutantsGrowth-arrested cellsViral replicationNormal bronchial epithelial cellsNormal cell typesE1A proteinsWild-type virusWild typeBronchial epithelial cellsS phaseCell typesDeletionE1ACMV promoterEpithelial cellsReplicationAdenoviral replicationCytotoxicity profileCellsSelective viral replicationTarget cellsA Dynamic Molecular Link between the Telomere Length Regulator TRF1 and the Chromosome End Protector TRF2
Houghtaling BR, Cuttonaro L, Chang W, Smith S. A Dynamic Molecular Link between the Telomere Length Regulator TRF1 and the Chromosome End Protector TRF2. Current Biology 2004, 14: 1621-1631. PMID: 15380063, DOI: 10.1016/j.cub.2004.08.052.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBlotting, NorthernCell CycleFluorescent Antibody TechniqueHeLa CellsHumansImmunoprecipitationModels, BiologicalMolecular Sequence DataPlasmidsSequence Analysis, DNAShelterin ComplexTelomereTelomere-Binding ProteinsTelomeric Repeat Binding Protein 1Telomeric Repeat Binding Protein 2Two-Hybrid System TechniquesConceptsTelomerase-mediated telomere elongationTelomere length homeostasisBinding proteins TRF1Telomere length controlLength homeostasisTelomeric chromatinProteins TRF1Chromosome endsTelomere elongationHuman telomeresTankyrase 1TRF1TRF2Negative regulatorMolecular linkMolecular mechanismsCell cycleTelomeresDynamic cross talkTIN2Cross talkLength controlChromatinRegulatorProtein
2003
TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres
Chang W, Dynek JN, Smith S. TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes & Development 2003, 17: 1328-1333. PMID: 12782650, PMCID: PMC196064, DOI: 10.1101/gad.1077103.Peer-Reviewed Original ResearchConceptsSequential post-translational modificationsAccess of telomeraseDNA-binding proteinsPost-translational modificationsMammalian telomeresTelomeres resultsTranslational modificationsTankyrase 1TRF1Negative regulatorTelomeresADP-ribosylationNovel mechanismUnbound formUbiquitinationTelomere lengthUbiquitinProteasomeTelomeraseRegulatorProteolysisProteinDegradationElongation