2020
ATP synthase c-subunit ring as the channel of mitochondrial permeability transition: Regulator of metabolism in development and degeneration
Mnatsakanyan N, Jonas EA. ATP synthase c-subunit ring as the channel of mitochondrial permeability transition: Regulator of metabolism in development and degeneration. Journal Of Molecular And Cellular Cardiology 2020, 144: 109-118. PMID: 32461058, PMCID: PMC7877492, DOI: 10.1016/j.yjmcc.2020.05.013.Peer-Reviewed Original ResearchConceptsMitochondrial permeability transition poreC subunit ringMitochondrial permeability transitionPermeability transitionRegulator of metabolismPermeability transition poreImportant metabolic regulatorMitochondrial megachannelBiology todayRegulatory mechanismsCentral playerTransition poreMetabolic regulatorMolecular compositionRecent findingsRegulatorDegenerative diseasesPathophysiological roleRecent advancesMegachannelRoleMetabolismMysterious phenomenon
2009
ATP Synthase with Its γ Subunit Reduced to the N-terminal Helix Can Still Catalyze ATP Synthesis*
Mnatsakanyan N, Hook JA, Quisenberry L, Weber J. ATP Synthase with Its γ Subunit Reduced to the N-terminal Helix Can Still Catalyze ATP Synthesis*. Journal Of Biological Chemistry 2009, 284: 26519-26525. PMID: 19636076, PMCID: PMC2785340, DOI: 10.1074/jbc.m109.030528.Peer-Reviewed Original Research