2024
The nature of chronic rejection after lung transplantation: a murine orthotopic lung transplant study
Heigl T, Kaes J, Aelbrecht C, Serré J, Yamada Y, Geudens V, Van Herck A, Vanstapel A, Sacreas A, Ordies S, Frick A, Gimenez B, Van Slambrouck J, Beeckmans H, Oztürk N, Orlitova M, Vaneylen A, Claes S, Schols D, Velde G, Schupp J, Kaminski N, Boesch M, Korf H, van der Merwe S, Dupont L, Vanoirbeek J, Godinas L, Van Raemdonck D, Janssens W, Gayan-Ramirez G, Ceulemans L, McDonough J, Verbeken E, Vos R, Vanaudenaerde B. The nature of chronic rejection after lung transplantation: a murine orthotopic lung transplant study. Frontiers In Immunology 2024, 15: 1369536. PMID: 38736881, PMCID: PMC11084670, DOI: 10.3389/fimmu.2024.1369536.Peer-Reviewed Original ResearchConceptsChronic lung allograft dysfunctionChronic rejectionLung transplantationSingle cell RNASingle cell RNA profilingOrthotopic left lung transplantationComplications post-transplantationLung allograft dysfunctionMouse lung transplantationLeft lung transplantationLung transplantation studiesAllograft dysfunctionPleural infiltrationPost-transplantationBronchiolitis obliteransInnate inflammationChronic complicationsPrimary onsetEndothelial destructionTransplantationDay 7Immunological perspectiveArterial responseTransplantation studiesLung
2023
Increased expression of CXCL6 in secretory cells drives fibroblast collagen synthesis and is associated with increased mortality in idiopathic pulmonary fibrosis.
Bahudhanapati H, Tan J, Apel R, Seeliger B, Schupp J, Li X, Sullivan D, Sembrat J, Rojas M, Tabib T, Valenzi E, Lafyatis R, Mitash N, Hernandez Pineda R, Jawale C, Peroumal D, Biswas P, Tedrow J, Adams T, Kaminski N, Wuyts W, McDyer J, Gibson K, Alder J, Königshoff M, Zhang Y, Nouraie M, Prasse A, Kass D. Increased expression of CXCL6 in secretory cells drives fibroblast collagen synthesis and is associated with increased mortality in idiopathic pulmonary fibrosis. European Respiratory Journal 2023, 63: 2300088. PMID: 37918852, DOI: 10.1183/13993003.00088-2023.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisAirway epithelial cellsBronchoalveolar lavagePulmonary fibrosisEpithelial cellsCollagen synthesisPathogenesis of IPFCohort of patientsIPF lung fibroblastsEffects of chemokinesAir-liquid interface culturesExpression of CXCL6Collagen I levelsIPF mortalityIPF patientsChemokine levelsIPF fibroblastsPoor survivalDistal lungI levelsWhole lungAnimal modelsEctopic localisationPatientsSingle-cell RNA sequencingAlveolar Vascular Remodeling in Nonspecific Interstitial Pneumonia: Replacement of Normal Lung Capillaries with COL15A1-Positive Endothelial Cells.
Schupp J, Manning E, Chioccioli M, Kamp J, Christian L, Ryu C, Herzog E, Kühnel M, Prasse A, Kaminski N, Jonigk D, Homer R, Neubert L, Ius F, stringJustet A, Hariri L, Seeliger B, Welte T, Knipe R, Gottlieb J. Alveolar Vascular Remodeling in Nonspecific Interstitial Pneumonia: Replacement of Normal Lung Capillaries with COL15A1-Positive Endothelial Cells. American Journal Of Respiratory And Critical Care Medicine 2023, 208: 819-822. PMID: 37552025, PMCID: PMC10563189, DOI: 10.1164/rccm.202303-0544le.Peer-Reviewed Original ResearchLung endothelium, tau, and amyloids in health and disease
Balczon R, Lin M, Voth S, Nelson A, Schupp J, Wagener B, Pittet J, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiological Reviews 2023, 104: 533-587. PMID: 37561137, PMCID: PMC11281824, DOI: 10.1152/physrev.00006.2023.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsEnd-organ dysfunctionLung endotheliumLower respiratory tract infectionsRespiratory tract infectionsAlveolar-capillary barrierLung capillary endotheliumTract infectionsImmune responseNeurocognitive dysfunctionBarrier integrityProtein tauLung capillariesInfectionCapillary endotheliumDysfunctionEpithelial cellsEndotheliumTau variantsVascular nicheTauHost-pathogen interactionsType ICytotoxic activityCytotoxicAmyloid variantsEffects of sotatercept on lung diffusion capacity and blood gases in patients with pulmonary arterial hypertension
Olsson K, Fuge J, Park D, Kamp J, Brod T, Harrigfeld B, Schupp J, Hoeper M. Effects of sotatercept on lung diffusion capacity and blood gases in patients with pulmonary arterial hypertension. European Respiratory Journal 2023, 62: 2301070. PMID: 37474157, DOI: 10.1183/13993003.01070-2023.Peer-Reviewed Original ResearchConceptsPulmonary arterial hypertensionLung diffusion capacityArterial hypertensionDiffusion capacityRight heart functionRight ventricular afterloadSmall pulmonary vesselsVentricular afterloadBlood gasesPulmonary vesselsHeart functionRare diseaseHypertensionPatientsSotaterceptProgressive increaseSymptomsVariable alterationsDisease symptomsGas exchangeAfterloadDiseaseSeverityVascular-Parenchymal Cross-Talk Promotes Lung Fibrosis through BMPR2 Signaling.
Yanagihara T, Tsubouchi K, Zhou Q, Chong M, Otsubo K, Isshiki T, Schupp J, Sato S, Scallan C, Upagupta C, Revill S, Ayoub A, Chong S, Dvorkin-Gheva A, Kaminski N, Tikkanen J, Keshavjee S, Paré G, Guignabert C, Ask K, Kolb M. Vascular-Parenchymal Cross-Talk Promotes Lung Fibrosis through BMPR2 Signaling. American Journal Of Respiratory And Critical Care Medicine 2023, 207: 1498-1514. PMID: 36917778, DOI: 10.1164/rccm.202109-2174oc.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisVascular smooth muscle cellsAdvanced idiopathic pulmonary fibrosisPulmonary hypertensionFibrotic lungsVascular remodelingEndothelial cellsPulmonary fibrosisLung diseaseLung fibrosisDevelopment of PHConcomitant pulmonary hypertensionProgressive lung scarringPulmonary vascular remodelingFibrotic lung diseaseProgression of fibrosisActivation of VSMCsActive TGF-β1Fatal lung diseaseSmooth muscle cellsWhole-exome sequencingLung scarringEndothelial dysfunctionPoor prognosisFibrogenic effects
2022
Saracatinib, a Selective Src Kinase Inhibitor, Blocks Fibrotic Responses in Preclinical Models of Pulmonary Fibrosis.
Ahangari F, Becker C, Foster DG, Chioccioli M, Nelson M, Beke K, Wang X, Justet A, Adams T, Readhead B, Meador C, Correll K, Lili LN, Roybal HM, Rose KA, Ding S, Barnthaler T, Briones N, DeIuliis G, Schupp JC, Li Q, Omote N, Aschner Y, Sharma L, Kopf KW, Magnusson B, Hicks R, Backmark A, Dela Cruz CS, Rosas I, Cousens LP, Dudley JT, Kaminski N, Downey GP. Saracatinib, a Selective Src Kinase Inhibitor, Blocks Fibrotic Responses in Preclinical Models of Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2022, 206: 1463-1479. PMID: 35998281, PMCID: PMC9757097, DOI: 10.1164/rccm.202010-3832oc.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisHuman precision-cut lung slicesPrecision-cut lung slicesPulmonary fibrosisNormal human lung fibroblastsEpithelial-mesenchymal transitionHuman lung fibroblastsFibrogenic pathwaysPreclinical modelsMurine modelLung slicesSrc kinase inhibitorLung fibroblastsKinase inhibitorsAmelioration of fibrosisSelective Src kinase inhibitorHuman lung fibrosisWhole lung extractsPotential therapeutic efficacyIPF diseaseIPF treatmentLung functionInflammatory cascadeLung fibrosisAntifibrotic efficacyRecruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis
Öz H, Cheng E, Di Pietro C, Tebaldi T, Biancon G, Zeiss C, Zhang P, Huang P, Esquibies S, Britto C, Schupp J, Murray T, Halene S, Krause D, Egan M, Bruscia E. Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis. Cell Reports 2022, 41: 111797. PMID: 36516754, PMCID: PMC9833830, DOI: 10.1016/j.celrep.2022.111797.Peer-Reviewed Original ResearchConceptsC motif chemokine receptor 2Monocytes/macrophagesLung tissue damageCystic fibrosisTissue damageCF lungPulmonary neutrophilic inflammationPro-inflammatory environmentChemokine receptor 2CF lung diseaseNumber of monocytesSpecific therapeutic agentsGrowth factor βCF transmembrane conductance regulatorLung hyperinflammationLung neutrophiliaNeutrophilic inflammationNeutrophil inflammationInflammation contributesLung damageNeutrophil recruitmentLung diseaseLung tissueReceptor 2Therapeutic targetAirway basal cells show a dedifferentiated KRT17highPhenotype and promote fibrosis in idiopathic pulmonary fibrosis
Jaeger B, Schupp JC, Plappert L, Terwolbeck O, Artysh N, Kayser G, Engelhard P, Adams TS, Zweigerdt R, Kempf H, Lienenklaus S, Garrels W, Nazarenko I, Jonigk D, Wygrecka M, Klatt D, Schambach A, Kaminski N, Prasse A. Airway basal cells show a dedifferentiated KRT17highPhenotype and promote fibrosis in idiopathic pulmonary fibrosis. Nature Communications 2022, 13: 5637. PMID: 36163190, PMCID: PMC9513076, DOI: 10.1038/s41467-022-33193-0.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisAirway basal cellsPulmonary fibrosisNovel mouse xenograft modelEffect of saracatinibBasal cellsLimited treatment optionsMouse xenograft modelLung developmental processesConnectivity Map analysisExtracellular matrix depositionIPF lungsBronchial brushSevere fibrosisTreatment optionsBronchial brushingsNRG miceHealthy volunteersXenograft modelCyst-like structuresProfibrotic changesAlveolar compartmentFatal diseaseFibrosisPotent Src inhibitorCharacterization of the COPD alveolar niche using single-cell RNA sequencing
Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, Schupp JC, Nouws J, Robertson MJ, Coarfa C, Yang T, Chioccioli M, Omote N, Cosme C, Poli S, Ayaub EA, Chu SG, Jensen KH, Gomez JL, Britto CJ, Raredon MSB, Niklason LE, Wilson AA, Timshel PN, Kaminski N, Rosas IO. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nature Communications 2022, 13: 494. PMID: 35078977, PMCID: PMC8789871, DOI: 10.1038/s41467-022-28062-9.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencingRNA sequencingCell-specific mechanismsChronic obstructive pulmonary diseaseAdvanced chronic obstructive pulmonary diseaseTranscriptomic network analysisSingle-cell RNA sequencing profilesCellular stress toleranceAberrant cellular metabolismStress toleranceRNA sequencing profilesTranscriptional evidenceCellular metabolismAlveolar nicheSequencing profilesHuman alveolar epithelial cellsChemokine signalingAlveolar epithelial type II cellsObstructive pulmonary diseaseSitu hybridizationType II cellsEpithelial type II cellsSequencingCOPD pathobiologyHuman lung tissue samplesBAL Transcriptomes Characterize Idiopathic Pulmonary Fibrosis Endotypes With Prognostic Impact
De Sadeleer LJ, Verleden SE, Schupp JC, McDonough JE, Goos T, Yserbyt J, Bargagli E, Rottoli P, Kaminski N, Prasse A, Wuyts WA. BAL Transcriptomes Characterize Idiopathic Pulmonary Fibrosis Endotypes With Prognostic Impact. CHEST Journal 2022, 161: 1576-1588. PMID: 35063449, PMCID: PMC9424328, DOI: 10.1016/j.chest.2021.12.668.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisIPF samplesIndependent validation cohortAvailable gene expression datasetsClinical characteristicsPrognostic impactWorse survivalPathophysiologic mechanismsPulmonary fibrosisClinical evolutionClinical variablesValidation cohortEnrichment analysisBAL samplesSurvival-associated genesBlood samplesEndotypesStudy designControl participantsMitochondrial dysfunctionPatientsFibrosisSurvivalTranscription factorsNumeric trendsLung Microenvironments and Disease Progression in Fibrotic Hypersensitivity Pneumonitis.
De Sadeleer LJ, McDonough JE, Schupp JC, Yan X, Vanstapel A, Van Herck A, Everaerts S, Geudens V, Sacreas A, Goos T, Aelbrecht C, Nawrot TS, Martens DS, Schols D, Claes S, Verschakelen JA, Verbeken EK, Ackermann M, Decottignies A, Mahieu M, Hackett TL, Hogg JC, Vanaudenaerde BM, Verleden SE, Kaminski N, Wuyts WA. Lung Microenvironments and Disease Progression in Fibrotic Hypersensitivity Pneumonitis. American Journal Of Respiratory And Critical Care Medicine 2022, 205: 60-74. PMID: 34724391, PMCID: PMC8865586, DOI: 10.1164/rccm.202103-0569oc.Peer-Reviewed Original ResearchConceptsFibrotic hypersensitivity pneumonitisIdiopathic pulmonary fibrosisHypersensitivity pneumonitisLung zonesMolecular traitsUnused donor lungsInterstitial lung diseaseLocal disease extentProgression of fibrosisSevere fibrosis groupGene co-expression network analysisCo-expression network analysisExplant lungsDonor lungsLung involvementEndothelial functionLung findingsDisease extentPulmonary fibrosisLung diseaseFibrosis groupLung microenvironmentClinical behaviorDisease progressionBAL samples
2021
FeV1 and BMI influence King’s Sarcoidosis Questionnaire score in sarcoidosis patients
Frye B, Potasso L, Farin-Glattacker E, Birring S, Müller-Quernheim J, Schupp J. FeV1 and BMI influence King’s Sarcoidosis Questionnaire score in sarcoidosis patients. BMC Pulmonary Medicine 2021, 21: 395. PMID: 34861850, PMCID: PMC8643005, DOI: 10.1186/s12890-021-01761-7.Peer-Reviewed Original ResearchConceptsKing's Sarcoidosis QuestionnaireBody mass indexSarcoidosis patientsQuality of lifeSerological parametersHigher body mass indexGerman Clinical Trials RegisterLife style modificationClinical Trials RegisterEffect of obesitySteroid-sparing therapiesLung functional parametersGeneral health statusOrgan-specific domainsConclusionThis observationKSQ scoresTrials RegisterClinical chartsMethodsClinical dataOrgan manifestationsLung functionMass indexClinical parametersStyle modificationTRIAL REGISTRATIONChronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity
Bui LT, Winters NI, Chung MI, Joseph C, Gutierrez AJ, Habermann AC, Adams TS, Schupp JC, Poli S, Peter LM, Taylor CJ, Blackburn JB, Richmond BW, Nicholson AG, Rassl D, Wallace WA, Rosas IO, Jenkins RG, Kaminski N, Kropski JA, Banovich NE. Chronic lung diseases are associated with gene expression programs favoring SARS-CoV-2 entry and severity. Nature Communications 2021, 12: 4314. PMID: 34262047, PMCID: PMC8280215, DOI: 10.1038/s41467-021-24467-0.Peer-Reviewed Original ResearchConceptsChronic lung diseaseLung diseaseImmune responseSARS-CoV-2 entry factorsSevere coronavirus disease-19SARS-CoV-2 infectionWorse COVID-19 outcomesSARS-CoV-2 entryAdaptive immune responsesCoronavirus disease-19COVID-19 outcomesInnate immune responseInflammatory gene expression programSimilar cellular distributionPoor outcomePeripheral lungViral exposureDisease-19Inflammatory microenvironmentEntry factorsLung epitheliumLung cellsViral replicationAT2 cellsBasal differencesIntegrated Single-Cell Atlas of Endothelial Cells of the Human Lung
Schupp JC, Adams TS, Cosme C, Raredon MSB, Yuan Y, Omote N, Poli S, Chioccioli M, Rose KA, Manning EP, Sauler M, DeIuliis G, Ahangari F, Neumark N, Habermann AC, Gutierrez AJ, Bui LT, Lafyatis R, Pierce RW, Meyer KB, Nawijn MC, Teichmann SA, Banovich NE, Kropski JA, Niklason LE, Pe’er D, Yan X, Homer RJ, Rosas IO, Kaminski N. Integrated Single-Cell Atlas of Endothelial Cells of the Human Lung. Circulation 2021, 144: 286-302. PMID: 34030460, PMCID: PMC8300155, DOI: 10.1161/circulationaha.120.052318.Peer-Reviewed Original ResearchConceptsDifferential expression analysisPrimary lung endothelial cellsLung endothelial cellsCell typesMarker genesExpression analysisSingle-cell RNA sequencing dataCross-species analysisVenous endothelial cellsEndothelial marker genesSingle-cell atlasMarker gene setsRNA sequencing dataEndothelial cellsSubsequent differential expression analysisDifferent lung cell typesResident cell typesLung cell typesCellular diversityEndothelial cell typesCapillary endothelial cellsHuman lung endothelial cellsPhenotypic diversityEndothelial diversityIndistinguishable populationsSingle-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics
Muus C, Luecken M, Eraslan G, Sikkema L, Waghray A, Heimberg G, Kobayashi Y, Vaishnav E, Subramanian A, Smillie C, Jagadeesh K, Duong E, Fiskin E, Torlai Triglia E, Ansari M, Cai P, Lin B, Buchanan J, Chen S, Shu J, Haber A, Chung H, Montoro D, Adams T, Aliee H, Allon S, Andrusivova Z, Angelidis I, Ashenberg O, Bassler K, Bécavin C, Benhar I, Bergenstråhle J, Bergenstråhle L, Bolt L, Braun E, Bui L, Callori S, Chaffin M, Chichelnitskiy E, Chiou J, Conlon T, Cuoco M, Cuomo A, Deprez M, Duclos G, Fine D, Fischer D, Ghazanfar S, Gillich A, Giotti B, Gould J, Guo M, Gutierrez A, Habermann A, Harvey T, He P, Hou X, Hu L, Hu Y, Jaiswal A, Ji L, Jiang P, Kapellos T, Kuo C, Larsson L, Leney-Greene M, Lim K, Litviňuková M, Ludwig L, Lukassen S, Luo W, Maatz H, Madissoon E, Mamanova L, Manakongtreecheep K, Leroy S, Mayr C, Mbano I, McAdams A, Nabhan A, Nyquist S, Penland L, Poirion O, Poli S, Qi C, Queen R, Reichart D, Rosas I, Schupp J, Shea C, Shi X, Sinha R, Sit R, Slowikowski K, Slyper M, Smith N, Sountoulidis A, Strunz M, Sullivan T, Sun D, Talavera-López C, Tan P, Tantivit J, Travaglini K, Tucker N, Vernon K, Wadsworth M, Waldman J, Wang X, Xu K, Yan W, Zhao W, Ziegler C. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nature Medicine 2021, 27: 546-559. PMID: 33654293, PMCID: PMC9469728, DOI: 10.1038/s41591-020-01227-z.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAlveolar Epithelial CellsAngiotensin-Converting Enzyme 2Cathepsin LCOVID-19Datasets as TopicDemographyFemaleGene Expression ProfilingHost-Pathogen InteractionsHumansLungMaleMiddle AgedOrgan SpecificityRespiratory SystemSARS-CoV-2Sequence Analysis, RNASerine EndopeptidasesSingle-Cell AnalysisVirus InternalizationConceptsSingle-cell RNA-sequencing studiesRNA-sequencing studiesSpecific expression patternsExpression programsKey immune functionsExpression patternsSARS-CoV-2 entry genesSpecific expressionAlveolar type 2 cellsMolecular pathwaysLung parenchyma samplesCoronavirus disease 2019 (COVID-19) transmissionDifferent tissuesCellular entryGenesRespiratory epithelial cellsAirway secretory cellsSecretory cellsTumor necrosis factorEntry genesExpression levelsType 2 cellsEpithelial cellsGut tissueSpecific subsetS2K Guideline for Diagnosis of Idiopathic Pulmonary Fibrosis
Behr J, Günther A, Bonella F, Dinkel J, Fink L, Geiser T, Geissler K, Gläser S, Handzhiev S, Jonigk D, Koschel D, Kreuter M, Leuschner G, Markart P, Prasse A, Schönfeld N, Schupp J, Sitter H, Müller-Quernheim J, Costabel U. S2K Guideline for Diagnosis of Idiopathic Pulmonary Fibrosis. Respiration 2021, 100: 238-271. PMID: 33486500, DOI: 10.1159/000512315.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsIdiopathic pulmonary fibrosisPulmonary fibrosisDiagnosis of IPFInternational IPF guidelinesSurgical lung biopsyDiagnosis of exclusionTransbronchial lung cryobiopsyInterstitial lung diseaseIPF patientsTypical clinical contextLung biopsyLung cryobiopsyBronchoalveolar lavageSerologic testingBronchoscopic diagnosisLung diseaseDiagnostic workupIPF guidelinesMultidisciplinary discussionStandardized questionnaireFatal diseaseUpdate 2018DiagnosisClinical contextGolden standard
2020
Cathepsin B promotes collagen biosynthesis, which drives bronchiolitis obliterans syndrome
Morrone C, Smirnova NF, Jeridi A, Kneidinger N, Hollauer C, Schupp JC, Kaminski N, Jenne D, Eickelberg O, Yildirim AÖ. Cathepsin B promotes collagen biosynthesis, which drives bronchiolitis obliterans syndrome. European Respiratory Journal 2020, 57: 2001416. PMID: 33303550, DOI: 10.1183/13993003.01416-2020.Peer-Reviewed Original ResearchConceptsBronchoalveolar lavage fluidCathepsin B activityHealthy donorsLung tissueCollagen depositionB activityCathepsin BBronchiolitis obliterans syndromeProgression of BOSFluorescence resonance energy transfer-based assayPromising therapeutic targetGrowth factor-β1Cathepsin B levelsSubsequent collagen depositionBOS pathogenesisBOS patientsBOS progressionLTx patientsLymphocytic bronchiolitisObliterans syndromeLung transplantationPeribronchial fibrosisPulmonary dysfunctionLung functionMajor complicationsCollagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis
Tsukui T, Sun KH, Wetter JB, Wilson-Kanamori JR, Hazelwood LA, Henderson NC, Adams TS, Schupp JC, Poli SD, Rosas IO, Kaminski N, Matthay MA, Wolters PJ, Sheppard D. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications 2020, 11: 1920. PMID: 32317643, PMCID: PMC7174390, DOI: 10.1038/s41467-020-15647-5.Peer-Reviewed Original ResearchConceptsCollagen-producing cellsSitu hybridization showDisease-relevant phenotypesCell atlasDistinct localizationExpression of CTHRC1Fibrotic lungsDifferent compartmentsPulmonary fibrosisDistinct anatomical localizationCellsCTHRC1Murine lungFibroblastsIdiopathic pulmonary fibrosisAdoptive transfer experimentsLocalizationSubpopulationsComplex architectureTransfer experimentsFibroblastic fociPathologic fibrosisPathologic scarringScleroderma patientsSimilar heterogeneityS2K-Leitlinie zur Diagnostik der idiopathischen Lungenfibrose
Behr J, Günther A, Bonella F, Dinkel J, Fink L, Geiser T, Geißler K, Gläser S, Handzhhiev S, Jonigk D, Koschel D, Kreuter M, Leuschner G, Markart P, Prasse A, Schönfeld N, Schupp J, Sitter H, Müller-Quernheim J, Costabel U. S2K-Leitlinie zur Diagnostik der idiopathischen Lungenfibrose. Pneumologie 2020, 74: 263-293. PMID: 32227328, DOI: 10.1055/a-1120-3531.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsIdiopathic pulmonary fibrosisIPF patientsDiagnosis of IPFInternational IPF guidelinesSurgical lung biopsyDiagnosis of exclusionTransbronchial lung cryobiopsyInterstitial lung diseaseTypical clinical settingLung biopsyLung cryobiopsyBronchoalveolar lavagePulmonary fibrosisSerologic testingBronchoscopic diagnosisLung diseaseIPF guidelinesAntifibrotic drugsMultidisciplinary discussionFatal diseaseUpdate 2018Standardised questionnaireClinical settingPatientsDiagnosis