2024
Akt is a mediator of artery specification during zebrafish development
Zhou W, Ghersi J, Ristori E, Semanchik N, Prendergast A, Zhang R, Carneiro P, Baldissera G, Sessa W, Nicoli S. Akt is a mediator of artery specification during zebrafish development. Development 2024, 151: dev202727. PMID: 39101673, PMCID: PMC11441982, DOI: 10.1242/dev.202727.Peer-Reviewed Original ResearchArterial specificationEndothelial cellsVascular endothelial growth factor ADorsal aortaEndothelial growth factor ASingle-cell RNA sequencing analysisGrowth factor AArtery endothelial cellsEmbryonic cardiovascular systemConstitutively active Akt1Ligand-independent activationActivation of NotchArteriovenous malformationsCongenital malformationsRNA sequencing analysisVEGF-AProtein kinase BUpstream of NotchSequence analysisCardiovascular developmentSpecific expressionAkt kinaseActive Akt1Zebrafish developmentCardiovascular systemDisruption of mitochondrial unfolded protein response results in telomere shortening in mouse oocytes and somatic cells
Cozzolino M, Ergun Y, Ristori E, Garg A, Imamoglu G, Seli E. Disruption of mitochondrial unfolded protein response results in telomere shortening in mouse oocytes and somatic cells. Aging 2024, 16: 2047-2060. PMID: 38349865, PMCID: PMC10911389, DOI: 10.18632/aging.205543.Peer-Reviewed Original ResearchConceptsCaseinolytic peptidase PMitochondrial unfolded protein responseUnfolded protein responseTelomere integrityProtein responseGermline deletionSomatic cellsSomatic agingSomatic cell divisionDouble-stranded DNA breaksAged miceTelomere shorteningAssociated with cellular senescenceTelomeric regionsProtein homeostasisAccelerated follicular depletionChromosome stabilityCell divisionMtUPRDNA breaksTelomereAging phenotypesCellular senescenceFollicular depletionMouse oocytes
2022
Author Correction: Syndecan-2 selectively regulates VEGF-induced vascular permeability
Corti F, Ristori E, Rivera-Molina F, Toomre D, Zhang J, Mihailovic J, Zhuang Z, Simons M. Author Correction: Syndecan-2 selectively regulates VEGF-induced vascular permeability. Nature Cardiovascular Research 2022, 1: 592-592. PMID: 39195875, DOI: 10.1038/s44161-022-00092-y.Peer-Reviewed Original ResearchALDH1A1 overexpression in melanoma cells promotes tumor angiogenesis by activating the IL-8/Notch signaling cascade
Ciccone V, Terzuoli E, Ristori E, Filippelli A, Ziche M, Morbidelli L, Donnini S. ALDH1A1 overexpression in melanoma cells promotes tumor angiogenesis by activating the IL-8/Notch signaling cascade. International Journal Of Molecular Medicine 2022, 50: 99. PMID: 35656893, PMCID: PMC9186295, DOI: 10.3892/ijmm.2022.5155.Peer-Reviewed Original ResearchConceptsIL-8Endothelial cellsMelanoma cellsTumor cellsALDH1A1 expressionAngiogenic factorsAngiogenic featuresTumor microenvironmentCancer cellsPoor clinical outcomeHigher microvessel densityNumber of cancersPro-angiogenic phenotypeOverexpression of ALDH1A1ALDH1A1 overexpressionClinical outcomesCo-culture systemMicrovessel densityImmunodeficient miceNF-kBProangiogenic factorsMelanoma cancer cellsTumor angiogenesisMelanoma controlStromal cellsSyndecan-2 selectively regulates VEGF-induced vascular permeability
Corti F, Ristori E, Rivera-Molina F, Toomre D, Zhang J, Mihailovic J, Zhuang ZW, Simons M. Syndecan-2 selectively regulates VEGF-induced vascular permeability. Nature Cardiovascular Research 2022, 1: 518-528. PMID: 36212522, PMCID: PMC9544384, DOI: 10.1038/s44161-022-00064-2.Peer-Reviewed Original ResearchChapter 2 Antiangiogenic drugs: Chemosensitizers for combination cancer therapy
Donnini S, Filippelli A, Ciccone V, Spini A, Ristori E, Ziche M, Morbidelli L. Chapter 2 Antiangiogenic drugs: Chemosensitizers for combination cancer therapy. 2022, 29-66. DOI: 10.1016/b978-0-323-90190-1.00008-1.Peer-Reviewed Original ResearchImmune-competent T cellsAntiangiogenic drugsVascular normalizationT cellsTumor vasculatureTumor microenvironmentTumor areaImmune checkpoint inhibitorsAnticancer drugsCheckpoint inhibitorsImmune therapyAdvanced tumorsCombination therapyPromising chemosensitizerAntiangiogenic therapyTarget therapyTumor disseminationAnticancer chemoClinical developmentEffective deliverySolid tumorsTherapyTumor progressionTumor resistanceTumor angiogenesis
2021
PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans
Barak T, Ristori E, Ercan-Sencicek AG, Miyagishima DF, Nelson-Williams C, Dong W, Jin SC, Prendergast A, Armero W, Henegariu O, Erson-Omay EZ, Harmancı AS, Guy M, Gültekin B, Kilic D, Rai DK, Goc N, Aguilera SM, Gülez B, Altinok S, Ozcan K, Yarman Y, Coskun S, Sempou E, Deniz E, Hintzen J, Cox A, Fomchenko E, Jung SW, Ozturk AK, Louvi A, Bilgüvar K, Connolly ES, Khokha MK, Kahle KT, Yasuno K, Lifton RP, Mishra-Gorur K, Nicoli S, Günel M. PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans. Nature Medicine 2021, 27: 2165-2175. PMID: 34887573, PMCID: PMC8768030, DOI: 10.1038/s41591-021-01572-7.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesPeptidyl-prolyl cis-transPathogenesis of IAContribution of variantsCommon genetic variantsVertebrate modelDeleterious mutationsWnt activatorAssociation studiesWhole-exome sequencingSignificant enrichmentGenetic variantsWntAngiogenesis regulatorsMutationsGene mutationsBrain angiogenesisIntracranial aneurysm ruptureJMJD6AngiogenesisCerebrovascular morphologyCerebrovascular integrityIntracerebral hemorrhageAneurysm ruptureVariantsMITOCHONDRIAL DYSFUNCTION CAUSED BY TARGETED DELETION OF CLPP Results IN TELOMERE SHORTENING IN OOCYTES AND SOMATIC CELLS
Cozzolino M, Imamoglu G, Ristori E, Seli E. MITOCHONDRIAL DYSFUNCTION CAUSED BY TARGETED DELETION OF CLPP Results IN TELOMERE SHORTENING IN OOCYTES AND SOMATIC CELLS. Fertility And Sterility 2021, 116: e411. DOI: 10.1016/j.fertnstert.2021.07.1101.Peer-Reviewed Original Research
2020
Amyloid-β Precursor Protein APP Down-Regulation Alters Actin Cytoskeleton-Interacting Proteins in Endothelial Cells
Ristori E, Cicaloni V, Salvini L, Tinti L, Tinti C, Simons M, Corti F, Donnini S, Ziche M. Amyloid-β Precursor Protein APP Down-Regulation Alters Actin Cytoskeleton-Interacting Proteins in Endothelial Cells. Cells 2020, 9: 2506. PMID: 33228083, PMCID: PMC7699411, DOI: 10.3390/cells9112506.Peer-Reviewed Original ResearchConceptsAmyloid-β precursor proteinCerebral amyloid angiopathyUbiquitous membrane proteinsFocal adhesion stabilityEndothelial cellsMajor cellular targetInteracting proteinActin cytoskeletonProteomic approachMembrane proteinsAlzheimer's diseaseMolecular mechanismsCellular responsesCellular targetsPhysiological roleRole of APPEndothelial cell proliferationPrecursor proteinCell proliferationNormal endothelial functionProteinNeuronal tissueGrowth factorExogenous stimuliExpressionNew Insights Into Blood-Brain Barrier Maintenance: The Homeostatic Role of β-Amyloid Precursor Protein in Cerebral Vasculature
Ristori E, Donnini S, Ziche M. New Insights Into Blood-Brain Barrier Maintenance: The Homeostatic Role of β-Amyloid Precursor Protein in Cerebral Vasculature. Frontiers In Physiology 2020, 11: 1056. PMID: 32973564, PMCID: PMC7481479, DOI: 10.3389/fphys.2020.01056.Peer-Reviewed Original ResearchCerebral amyloid angiopathyΒ-amyloid precursor proteinBlood-brain barrierCentral nervous systemAlzheimer's diseaseBlood-brain barrier maintenanceΒ-amyloid accumulationPeripheral blood circulationPrecursor proteinEndothelial cell homeostasisCAA pathogenesisBBB dysfunctionBBB functionAmyloid angiopathyVascular dysfunctionAD onsetCerebrovascular homeostasisCerebral vasculatureVascular endotheliumPathological outcomesNervous systemHomeostatic roleBrain vasculatureNeurodegenerative disordersBarrier maintenanceCommon Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System
Hrelia P, Sita G, Ziche M, Ristori E, Marino A, Cordaro M, Molteni R, Spero V, Malaguti M, Morroni F, Hrelia S. Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System. Oxidative Medicine And Cellular Longevity 2020, 2020: 8363245. PMID: 32832006, PMCID: PMC7422410, DOI: 10.1155/2020/8363245.Peer-Reviewed Original ResearchConceptsNeurodegenerative diseasesRisk factorsCellular redox systemsRedox homeostasisMolecular mechanismsMultiple risk factorsPivotal risk factorComplex multifactorial natureDisease mechanismsVascular injuryChronic neurodegenerationPreventive strategiesCommon mechanismOxidative stressMultifactorial natureDiseaseProtective strategiesHuman brainRedox systemProgressionComplex networksMechanismHomeostasisEarly stagesInflammation
2019
Molecular and taxonomic analyses in troglobiotic Alpioniscus (Illyrionethes) species from the Dinaric Karst (Isopoda: Trichoniscidae)
Bedek J, Taiti S, Bilandžija H, Ristori E, Baratti M. Molecular and taxonomic analyses in troglobiotic Alpioniscus (Illyrionethes) species from the Dinaric Karst (Isopoda: Trichoniscidae). Zoological Journal Of The Linnean Society 2019, 187: 539-584. DOI: 10.1093/zoolinnean/zlz056.Peer-Reviewed Original ResearchNominal speciesNuclear gene fragmentsFuture species identificationDinaric karstMost nominal speciesNew morphological charactersSpecies richnessDetailed morphological analysisWidespread taxaDistinct lineagesPhylogenetic methodsMorphological charactersTerrestrial isopodsGene fragmentsTaxonomic analysisDNA fragmentsSpecies identificationDifferent speciesBody part ratiosTaxaMolecular analysisSpeciesMorphological analysisTroglobiontsFragments
2017
MicroRNAs Establish Uniform Traits during the Architecture of Vertebrate Embryos
Kasper DM, Moro A, Ristori E, Narayanan A, Hill-Teran G, Fleming E, Moreno-Mateos M, Vejnar CE, Zhang J, Lee D, Gu M, Gerstein M, Giraldez A, Nicoli S. MicroRNAs Establish Uniform Traits during the Architecture of Vertebrate Embryos. Developmental Cell 2017, 40: 552-565.e5. PMID: 28350988, PMCID: PMC5404386, DOI: 10.1016/j.devcel.2017.02.021.Peer-Reviewed Original ResearchConceptsDevelopment of vertebratesEmbryonic blood vesselsVertebrate miRNAsMutant embryosVertebrate embryosHigher organismsMiRNAs functionVascular traitsTrait varianceUniform traitTissue developmentEnvironmental perturbationsSignaling pathwaysPhenotypic variabilityEmbryosPhenotypic heterogeneityOrganismsTraitsProper functioningVascular systemVertebratesMutagenesisMiRNAsMicroRNAsPhenotypeChapter 15 Comparative Functions of miRNAs in Embryonic Neurogenesis and Neuronal Network Formation
Ristori E, Nicoli S. Chapter 15 Comparative Functions of miRNAs in Embryonic Neurogenesis and Neuronal Network Formation. 2017, 265-282. DOI: 10.1016/b978-0-12-804402-5.00015-7.Peer-Reviewed Original ResearchTarget mRNA degradationCell fate determinationGene regulatory pathwaysDynamic spatiotemporal expressionImportance of miRNAsSmall noncoding RNAsStem cell proliferationMulticellular organismsFate determinationMost miRNAsNeuronal network formationTranslational repressionModel organismsNeural stem cell proliferationMRNA degradationPosttranscriptional regulatorsNoncoding RNAsRegulatory pathwaysDevelopmental processesEmbryonic neurogenesisGene expressionSpatiotemporal expressionNovel roleNeuronal differentiationMiRNAs
2016
In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system
Narayanan A, Hill-Teran G, Moro A, Ristori E, Kasper DM, A. Roden C, Lu J, Nicoli S. In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system. Scientific Reports 2016, 6: 32386. PMID: 27572667, PMCID: PMC5004112, DOI: 10.1038/srep32386.Peer-Reviewed Original ResearchConceptsMiRNA familiesSingle guide RNAsMiRNA gene familiesHigher multicellular organismsMultiplexed CRISPR/Entire miRNA familiesMulticellular organismsMiRNA genesGene familySame physiological functionChromosomal locationPhylogenetic ancestorsGenomic sequencesCas9 nucleaseGuide RNACRISPR/Mutagenesis strategyNuclease systemPrimary sequenceVivo mutagenesisPhysiological functionsSecondary structureModel systemMiRNAsMutationsStudying Vascular Angiogenesis and Senescence in Zebrafish Embryos
Ristori E, Donnini S, Ziche M. Studying Vascular Angiogenesis and Senescence in Zebrafish Embryos. Methods In Molecular Biology 2016, 1430: 387-400. PMID: 27172969, DOI: 10.1007/978-1-4939-3628-1_27.Peer-Reviewed Original ResearchConceptsZebrafish embryosFluorescent transgenic linesCyclin-dependent kinase inhibitor p21 expressionVessel formationTransgenic linesSenescence defectsZebrafish modelPhosphatase activityAlkaline phosphatase activityEmbryosSenescenceExcellent animal modelExcellent disease modelZebrafishP21 expressionBrain degenerative changesNeurodegenerative diseasesVascular angiogenesisVascular senescenceΒ-galactosidaseOptical translucencyPeptide treatmentAmyloid β-peptideAngiogenesisDisease modelsIsolation and Culture of Adult Zebrafish Brain-derived Neurospheres
Lopez-Ramirez M, Calvo C, Ristori E, Thomas J, Nicoli S. Isolation and Culture of Adult Zebrafish Brain-derived Neurospheres. Journal Of Visualized Experiments 2016 DOI: 10.3791/53617-v.Peer-Reviewed Original ResearchIsolation and Culture of Adult Zebrafish Brain-derived Neurospheres.
Lopez-Ramirez MA, Calvo CF, Ristori E, Thomas JL, Nicoli S. Isolation and Culture of Adult Zebrafish Brain-derived Neurospheres. Journal Of Visualized Experiments 2016, 53617. PMID: 26967835, PMCID: PMC4828210, DOI: 10.3791/53617.Peer-Reviewed Original ResearchConceptsAdult zebrafish brainStem/progenitor cellsZebrafish brainMolecular mechanismsRelevant model organismZebrafish adult brainProgenitor cellsSingle-cell dissociationSpecific signaling pathwaysAdult stem/progenitor cellsStem/progenitor cell proliferationNeural stem/progenitor cell proliferationProgenitor cell proliferationNeural stem/progenitor cellsModel organismsGene expressionCell dissociationSignaling pathwaysMultipotent neural stem/progenitor cellsNeurosphere assayAdult neurogenesisCell proliferationZebrafishBrain regenerationAdult brain
2015
Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons
Fortuna V, Pardanaud L, Brunet I, Ola R, Ristori E, Santoro MM, Nicoli S, Eichmann A. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons. Cell Reports 2015, 11: 1786-1796. PMID: 26074079, DOI: 10.1016/j.celrep.2015.05.028.Peer-Reviewed Original ResearchConceptsPlatelet-derived growth factor receptorNA differentiationNoradrenergic differentiationMural cell recruitmentDorsal aortaSympathetic neuronsCloche mutantsCell recruitmentZebrafish embryosEmbryonic sympathetic neuronsGrowth factor receptorVascular mural cellsSmooth muscle targetsPostganglionic sympathetic neuronsSympathetic nervous systemMural cellsSympathetic precursorsFactor receptorVascular maturationDifferentiationMuscle toneMuscle targetsNeurovascular interactionsHeart rateNervous systemA Dicer-miR-107 Interaction Regulates Biogenesis of Specific miRNAs Crucial for Neurogenesis
Ristori E, Lopez-Ramirez MA, Narayanan A, Hill-Teran G, Moro A, Calvo CF, Thomas JL, Nicoli S. A Dicer-miR-107 Interaction Regulates Biogenesis of Specific miRNAs Crucial for Neurogenesis. Developmental Cell 2015, 32: 546-560. PMID: 25662174, PMCID: PMC8950125, DOI: 10.1016/j.devcel.2014.12.013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCell DifferentiationCell ProliferationImmunoenzyme TechniquesIn Situ HybridizationMicroRNAsNeurogenesisNeuronsReal-Time Polymerase Chain ReactionReverse Transcriptase Polymerase Chain ReactionRhombencephalonRibonuclease IIIRNA, MessengerTumor Cells, CulturedZebrafishZebrafish ProteinsConceptsSpecific miRNAsDicer levelsBiogenesis of microRNAsNeuronal cellsDicer expression levelsExpression levelsDicer resultsMiRNA biogenesisMiR-107 functionsBiogenesisEctopic accumulationSubstrate selectivityPostmitotic neuronsMiR-107MiR-9MiRNAsHomeostatic levelsPrecise accumulationNeurogenesisDicerCellsAccumulationMicroRNAsRecent reportsProgenitors