2024
Optimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University
Würstle S, Lee A, Kortright K, Winzig F, An W, Stanley G, Rajagopalan G, Harris Z, Sun Y, Hu B, Blazanin M, Hajfathalian M, Bollyky P, Turner P, Koff J, Chan B. Optimized preparation pipeline for emergency phage therapy against Pseudomonas aeruginosa at Yale University. Scientific Reports 2024, 14: 2657. PMID: 38302552, PMCID: PMC10834462, DOI: 10.1038/s41598-024-52192-3.Peer-Reviewed Original ResearchConceptsEvolutionary selection pressurePhage characterizationPhage therapyPersistent bacterial infectionsBacteriophage therapyPhageSelection pressurePseudomonas aeruginosaInvestigational new drug applicationBacterial infectionsNew Drug ApplicationTherapyDrug applicationClinical applicationAutographiviridaeBacteriaPotential strategy
2023
α1 Adrenoreceptor antagonism mitigates extracellular mitochondrial DNA accumulation in lung fibrosis models and in patients with idiopathic pulmonary fibrosis
Ishikawa G, Peng X, McGovern J, Woo S, Perry C, Liu A, Yu S, Ghincea A, Kishchanka A, Fiorini V, Hu B, Sun Y, Sun H, Ryu C, Herzog E. α1 Adrenoreceptor antagonism mitigates extracellular mitochondrial DNA accumulation in lung fibrosis models and in patients with idiopathic pulmonary fibrosis. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2023, 324: l639-l651. PMID: 36648147, PMCID: PMC10110730, DOI: 10.1152/ajplung.00119.2022.Peer-Reviewed Original ResearchConceptsAdrenergic nerve supplyIdiopathic pulmonary fibrosisΑ1 adrenoreceptorsPulmonary fibrosisNerve supplyCultured normal human lung fibroblastsInnate immune ligandsLung fibrosis modelNormal human lung fibroblastsSmooth muscle actinHuman lung fibroblastsAdrenal resectionAdrenoreceptor antagonismExtracellular mtDNAIPF cohortImproved survivalΑ1-adrenoreceptor antagonistsLung fibrosisAdrenal sourceFibroblast accumulationAdrenoreceptor antagonistBleomycin modelFibrosis modelLung fibrogenesisMouse modelIFN-γ Is Protective in Cytokine Release Syndrome-associated Extrapulmonary Acute Lung Injury.
Sun Y, Hu B, Stanley G, Harris ZM, Gautam S, Homer R, Koff JL, Rajagopalan G. IFN-γ Is Protective in Cytokine Release Syndrome-associated Extrapulmonary Acute Lung Injury. American Journal Of Respiratory Cell And Molecular Biology 2023, 68: 75-89. PMID: 36125351, PMCID: PMC9817908, DOI: 10.1165/rcmb.2022-0117oc.Peer-Reviewed Original ResearchConceptsCytokine release syndromeAcute lung injuryExtrapulmonary acute lung injuryIFN-γ KO miceIL-17ALung injuryKO miceStaphylococcal enterotoxin BRelease syndromeIL-17A KO miceSevere acute lung injuryAcute respiratory distress syndromeSystemic T cell activationEnterotoxin BAdaptive T lymphocytesDR3 transgenic miceNeutralization of IFNRespiratory distress syndromeHuman leukocyte antigenRole of IFNT cell cytokinesJanus kinase inhibitorS100A8/A9T cell activationALI parameters
2022
Epidermal Growth Factor Receptor Inhibition Is Protective in Hyperoxia‐Induced Lung Injury
Harris ZM, Sun Y, Joerns J, Clark B, Hu B, Korde A, Sharma L, Shin HJ, Manning EP, Placek L, Unutmaz D, Stanley G, Chun H, Sauler M, Rajagopalan G, Zhang X, Kang MJ, Koff JL. Epidermal Growth Factor Receptor Inhibition Is Protective in Hyperoxia‐Induced Lung Injury. Oxidative Medicine And Cellular Longevity 2022, 2022: 9518592. PMID: 36193076, PMCID: PMC9526641, DOI: 10.1155/2022/9518592.Peer-Reviewed Original ResearchConceptsAcute lung injuryEpidermal growth factor receptorAlveolar epithelial cellsLung injurySevere hyperoxiaEGFR inhibitionEpithelial cellsHyperoxia-Induced Lung InjuryRole of EGFRMurine alveolar epithelial cellsGrowth factor receptor inhibitionWorse clinical outcomesEpidermal growth factor receptor inhibitionHuman alveolar epithelial cellsWild-type littermatesPoly (ADP-ribose) polymeraseTerminal dUTP nickGrowth factor receptorClinical outcomesImproved survivalReceptor inhibitionLung repairProtective roleComplex roleEGFR deletionReducing asthma exacerbations in vulnerable children through a medical–legal partnership
Mainardi AS, Harris D, Rosenthal A, Redlich CA, Hu B, Fenick AM. Reducing asthma exacerbations in vulnerable children through a medical–legal partnership. Journal Of Asthma 2022, 60: 262-269. PMID: 35188437, DOI: 10.1080/02770903.2022.2045307.Peer-Reviewed Original ResearchConceptsMedical-legal partnershipsAsthma exacerbationsEmergency departmentHealth disparitiesAsthma exacerbation ratePrimary care officesAcademic children's hospitalAsthma health disparitiesExacerbation rateHealthcare utilizationPediatric populationChildren's HospitalCare officesPrimary careWorse outcomesChronic illnessInpatient settingStudy populationAsthmaTotal encountersSocial determinantsHospitalizationExacerbationStatistical significanceIntervention
2021
Transcriptomics of bronchoalveolar lavage cells identifies new molecular endotypes of sarcoidosis
Vukmirovic M, Yan X, Gibson KF, Gulati M, Schupp JC, DeIuliis G, Adams TS, Hu B, Mihaljinec A, Woolard TN, Lynn H, Emeagwali N, Herzog EL, Chen ES, Morris A, Leader JK, Zhang Y, Garcia JGN, Maier LA, Collman RG, Drake WP, Becich MJ, Hochheiser H, Wisniewski SR, Benos PV, Moller DR, Prasse A, Koth LL, Kaminski N. Transcriptomics of bronchoalveolar lavage cells identifies new molecular endotypes of sarcoidosis. European Respiratory Journal 2021, 58: 2002950. PMID: 34083402, PMCID: PMC9759791, DOI: 10.1183/13993003.02950-2020.Peer-Reviewed Original ResearchConceptsWeighted gene co-expression network analysisGene co-expression network analysisCo-expression network analysisGene expression programsGene expression patternsDistinct transcriptional programsImmune response pathwaysIon Torrent ProtonMicroarray expression datasetsExpression programsTranscriptional programsPhenotypic traitsGene modulesResponse pathwaysRNA sequencingMolecular endotypesExpression patternsGene expressionHilar lymphadenopathyOrgan involvementGenomic researchMechanistic targetExpression datasetsT helper type 1T cell immune responses
2020
Gene coexpression networks reveal novel molecular endotypes in alpha-1 antitrypsin deficiency
Chu JH, Zang W, Vukmirovic M, Yan X, Adams T, DeIuliis G, Hu B, Mihaljinec A, Schupp JC, Becich MJ, Hochheiser H, Gibson KF, Chen ES, Morris A, Leader JK, Wisniewski SR, Zhang Y, Sciurba FC, Collman RG, Sandhaus R, Herzog EL, Patterson KC, Sauler M, Strange C, Kaminski N. Gene coexpression networks reveal novel molecular endotypes in alpha-1 antitrypsin deficiency. Thorax 2020, 76: 134-143. PMID: 33303696, PMCID: PMC10794043, DOI: 10.1136/thoraxjnl-2019-214301.Peer-Reviewed Original ResearchConceptsWeighted gene co-expression network analysisAlpha-1 antitrypsin deficiencyGene modulesGene co-expression network analysisDifferential gene expression analysisCo-expression network analysisPeripheral blood mononuclear cellsGene expression patternsPBMC gene expression patternsGene coexpression networksAATD individualsGene expression profilesGene expression analysisBronchoalveolar lavageAugmentation therapyClinical variablesAntitrypsin deficiencyGene expression assaysRNA-seqCoexpression networkGene validationExpression analysisExpression assaysWGCNA modulesExpression patterns
2019
Plasma mitochondrial DNA is associated with extrapulmonary sarcoidosis
Ryu C, Brandsdorfer C, Adams T, Hu B, Kelleher DW, Yaggi M, Manning EP, Walia A, Reeves B, Pan H, Winkler J, Minasyan M, Dela Cruz CS, Kaminski N, Gulati M, Herzog EL. Plasma mitochondrial DNA is associated with extrapulmonary sarcoidosis. European Respiratory Journal 2019, 54: 1801762. PMID: 31273041, PMCID: PMC8088542, DOI: 10.1183/13993003.01762-2018.Peer-Reviewed Original ResearchConceptsExtrapulmonary diseaseMitochondrial DNAExtracellular mtDNABAL fluidAlpha-1 antitrypsin deficiencyPlasma mitochondrial DNAPlasma of patientsAfrican AmericansExtrapulmonary sarcoidosisSarcoidosis cohortSarcoidosis subjectsScadding stageAfrican American descentClinical featuresClinical findingsGranulomatous diseaseHealthy controlsAntitrypsin deficiencyGenomic researchHigher oddsSarcoidosisAggressive phenotypeMechanistic basisDiseaseTherapeutic insights
2016
Plexin C1 deficiency permits synaptotagmin 7–mediated macrophage migration and enhances mammalian lung fibrosis
Peng X, Moore M, Mathur A, Zhou Y, Sun H, Gan Y, Herazo‐Maya J, Kaminski N, Hu X, Pan H, Ryu C, Osafo‐Addo A, Homer RJ, Feghali‐Bostwick C, Fares W, Gulati M, Hu B, Lee C, Elias JA, Herzog EL. Plexin C1 deficiency permits synaptotagmin 7–mediated macrophage migration and enhances mammalian lung fibrosis. The FASEB Journal 2016, 30: 4056-4070. PMID: 27609773, PMCID: PMC5102121, DOI: 10.1096/fj.201600373r.Peer-Reviewed Original ResearchConceptsLung fibrosisPlexin C1Macrophage migrationPulmonary fibrosisBone marrow-derived cellsSynaptotagmin-7Idiopathic pulmonary fibrosisInterstitial lung diseaseMarrow-derived cellsTGF-β1 overexpressionFatal conditionLung diseaseMonocyte migrationUnrecognized observationCollagen accumulationFibrosisMice showBoyden chamberGenetic deletionLungMouse macrophagesSemaphorin receptorsMacrophagesC1s deficiencyDeficiency
2014
The prevalence of undiagnosed diabetes mellitus and the association of baseline glycemic control on mortality in the intensive care unit: A prospective observational study
Hoang QN, Pisani MA, Inzucchi S, Hu B, Honiden S. The prevalence of undiagnosed diabetes mellitus and the association of baseline glycemic control on mortality in the intensive care unit: A prospective observational study. Journal Of Critical Care 2014, 29: 1052-1056. PMID: 25092614, DOI: 10.1016/j.jcrc.2014.06.007.Peer-Reviewed Original ResearchConceptsBaseline glycemic controlStress hyperglycemiaGlycemic controlUndiagnosed diabetesChronic Health Evaluation II scoreMedical intensive care unit patientsIntensive care unit patientsHemoglobin A1c levelsHistory of diabetesObservational cohort studyProspective observational studyUndiagnosed diabetes mellitusCare unit patientsIntensive care unitLower baseline HbA1cMultivariable logistic regressionSignificant differencesAcute PhysiologyHospital mortalityNondiabetic patientsBaseline HbA1cII scoreMICU patientsCohort studyCritical illnessChitinase 3–Like 1 Suppresses Injury and Promotes Fibroproliferative Responses in Mammalian Lung Fibrosis
Zhou Y, Peng H, Sun H, Peng X, Tang C, Gan Y, Chen X, Mathur A, Hu B, Slade MD, Montgomery RR, Shaw AC, Homer RJ, White ES, Lee CM, Moore MW, Gulati M, Lee CG, Elias JA, Herzog EL. Chitinase 3–Like 1 Suppresses Injury and Promotes Fibroproliferative Responses in Mammalian Lung Fibrosis. Science Translational Medicine 2014, 6: 240ra76. PMID: 24920662, PMCID: PMC4340473, DOI: 10.1126/scitranslmed.3007096.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisCHI3L1 levelsChitinase 3Lungs of patientsAlternative macrophage activationLevel of apoptosisAcute exacerbationFibroproliferative repairLung transplantationDisease exacerbationInjury phaseAmbulatory patientsEpithelial injuryPulmonary fibrosisIPF populationLung fibrosisMacrophage accumulationCHI3L1 expressionFibrotic phaseDisease progressionProfibrotic roleFibroproliferative responseMacrophage activationMyofibroblast transformationProtective role