2019
Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells
Baltazar T, Merola J, Catarino C, Xie C, Kirkiles-Smith N, Lee V, Hotta S, Dai G, Xu X, Ferreira FC, Saltzman WM, Pober JS, Karande P. Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells. Tissue Engineering Part A 2019, 26: 227-238. PMID: 31672103, PMCID: PMC7476394, DOI: 10.1089/ten.tea.2019.0201.Peer-Reviewed Original ResearchConceptsSkin graftsHuman endothelial colony-forming cellsEndothelial cellsHuman endothelial cellsHuman skin graftsEndothelial colony-forming cellsPlacental pericytesGraft survivalCutaneous ulcersAllogeneic cellsHuman foreskin keratinocytesMouse microvesselsImmunodeficient miceHuman pericytesGraftColony-forming cellsVascular structuresWound bedForeskin keratinocytesEpidermal maturationPericytesHuman placental pericytesHuman keratinocytesKeratinocytesType I
2015
Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+NIK+ signalosome on Rab5+ endosomes
Jane-wit D, Surovtseva YV, Qin L, Li G, Liu R, Clark P, Manes TD, Wang C, Kashgarian M, Kirkiles-Smith NC, Tellides G, Pober JS. Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+NIK+ signalosome on Rab5+ endosomes. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 9686-9691. PMID: 26195760, PMCID: PMC4534258, DOI: 10.1073/pnas.1503535112.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBaculoviral IAP Repeat-Containing 3 ProteinClathrinComplement Membrane Attack ComplexCoronary VesselsEndocytosisEndosomesEnzyme StabilityFlow CytometryHuman Umbilical Vein Endothelial CellsHumansHydrazonesInhibitor of Apoptosis ProteinsMice, SCIDNF-kappa BProtein BiosynthesisProtein Serine-Threonine KinasesProto-Oncogene Proteins c-aktRab5 GTP-Binding ProteinsRNA, Small InterferingSecretory VesiclesSignal TransductionTNF Receptor-Associated Factor 3Ubiquitin-Protein LigasesConceptsNF-κB-inducing kinaseMembrane attack complexNoncanonical NF-κBGenome-wide siRNA screenComplement membrane attack complexNIK stabilizationDynamin-dependent mannerNoncanonical NF-κB signalingEndothelial cellsActive Rab5Attack complexSiRNA screenNF-κBAkt activationCytokine-mediated activationNF-κB signalingIκB kinaseSignalosomeRab5EndosomesKinaseAktInternalizationCoronary endothelial cellsActivation
2014
CyTOF supports efficient detection of immune cell subsets from small samples
Yao Y, Liu R, Shin MS, Trentalange M, Allore H, Nassar A, Kang I, Pober JS, Montgomery RR. CyTOF supports efficient detection of immune cell subsets from small samples. Journal Of Immunological Methods 2014, 415: 1-5. PMID: 25450003, PMCID: PMC4269324, DOI: 10.1016/j.jim.2014.10.010.Peer-Reviewed Original ResearchConceptsImmune cell subsetsCell subsetsImmune cell statesPatient biopsiesTranslational investigationsFlow cytometryClinical researchCellular analysisMass cytometryMultiple cell populationsCell populationsCytometryCyTOFSingle-cell analysisMultiparameter single cell analysisFluorescence cytometryFluorescence-based flow cytometryCell statesHuman diseasesMarkersTremendous detailBiopsyPathogenesisRapamycin antagonizes TNF induction of VCAM-1 on endothelial cells by inhibiting mTORC2
Wang C, Qin L, Manes TD, Kirkiles-Smith NC, Tellides G, Pober JS. Rapamycin antagonizes TNF induction of VCAM-1 on endothelial cells by inhibiting mTORC2. Journal Of Experimental Medicine 2014, 211: 395-404. PMID: 24516119, PMCID: PMC3949571, DOI: 10.1084/jem.20131125.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceBlotting, WesternCell AdhesionChromatin ImmunoprecipitationDNA PrimersEndothelial CellsFlow CytometryHumansImmunoblottingMechanistic Target of Rapamycin Complex 2Microscopy, FluorescenceMultiprotein ComplexesOncogene Protein v-aktReal-Time Polymerase Chain ReactionSirolimusT-LymphocytesTOR Serine-Threonine KinasesTumor Necrosis Factor-alphaVascular Cell Adhesion Molecule-1ConceptsVascular cell adhesion molecule-1VCAM-1 expressionEndothelial cellsActivation of ERK1/2Cell adhesion molecule-1TNF inductionInfiltration of leukocytesAdhesion molecule-1Inhibition of TNFPotential therapeutic targetAbility of rapamycinAbility of TNFTranscription factor IRF-1Hyperactivation of ERK1/2Inhibition of ERK1/2Venular flowT cellsEndothelial expressionInflamed tissuesVascular endotheliumMolecule-1Therapeutic targetRapamycin pretreatmentRenal glomeruliTNF
2013
Sustained delivery of proangiogenic microRNA‐132 by nanoparticle transfection improves endothelial cell transplantation
Devalliere J, Chang WG, Andrejecsk JW, Abrahimi P, Cheng CJ, Jane‐wit D, Saltzman WM, Pober JS. Sustained delivery of proangiogenic microRNA‐132 by nanoparticle transfection improves endothelial cell transplantation. The FASEB Journal 2013, 28: 908-922. PMID: 24221087, PMCID: PMC3898640, DOI: 10.1096/fj.13-238527.Peer-Reviewed Original ResearchConceptsHuman umbilical vein ECsEndothelial cellsMiR-132MicroRNA-132Cultured human umbilical vein endothelial cellsNumber of microvesselsGrowth factor-induced proliferationHuman umbilical vein endothelial cellsUmbilical vein endothelial cellsEndothelial cell transplantationCultured endothelial cellsEndogenous growth factorsEC transplantationVein endothelial cellsCell transplantationImmunodeficient miceTissue perfusionTransplantationMiR deliveryGrowth factorIntegrin αvβ3Endocytosed nanoparticlesSquare millimeterBiological effectsControl transfection
2001
Human Vascular Endothelial Cells Stimulate a Lower Frequency of Alloreactive CD8+ Pre-CTL and Induce Less Clonal Expansion than Matching B Lymphoblastoid Cells: Development of a Novel Limiting Dilution Analysis Method Based on CFSE Labeling of Lymphocytes
Dengler T, Johnson D, Pober J. Human Vascular Endothelial Cells Stimulate a Lower Frequency of Alloreactive CD8+ Pre-CTL and Induce Less Clonal Expansion than Matching B Lymphoblastoid Cells: Development of a Novel Limiting Dilution Analysis Method Based on CFSE Labeling of Lymphocytes. The Journal Of Immunology 2001, 166: 3846-3854. PMID: 11238628, DOI: 10.4049/jimmunol.166.6.3846.Peer-Reviewed Original ResearchAntigens, CDB-Lymphocyte SubsetsCD8-Positive T-LymphocytesCell DivisionCell Line, TransformedCells, CulturedClone CellsCoculture TechniquesColony-Forming Units AssayCytotoxicity Tests, ImmunologicEndothelium, VascularFlow CytometryFluoresceinsFluorescent DyesHumansImmunologic MemoryInterphaseIsoantigensLymphocyte ActivationLymphocyte CountStem CellsSuccinimidesT-Lymphocyte SubsetsT-Lymphocytes, Regulatory
1998
Dermal Microvascular Injury in the Human Peripheral Blood Lymphocyte Reconstituted-Severe Combined Immunodeficient (HuPBL-SCID) Mouse/Skin Allograft Model Is T Cell Mediated and Inhibited by a Combination of Cyclosporine and Rapamycin
Murray A, Schechner J, Epperson D, Sultan P, McNiff J, Hughes C, Lorber M, Askenase P, Pober J. Dermal Microvascular Injury in the Human Peripheral Blood Lymphocyte Reconstituted-Severe Combined Immunodeficient (HuPBL-SCID) Mouse/Skin Allograft Model Is T Cell Mediated and Inhibited by a Combination of Cyclosporine and Rapamycin. American Journal Of Pathology 1998, 153: 627-638. PMID: 9708821, PMCID: PMC1852982, DOI: 10.1016/s0002-9440(10)65604-0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCD8-Positive T-LymphocytesCyclosporineDrug Therapy, CombinationEndothelium, VascularEnzyme-Linked Immunosorbent AssayFlow CytometryGenes, MHC Class IIGraft RejectionHumansImmunosuppressive AgentsKeratinocytesMiceMice, SCIDMicrocirculationPolyenesSirolimusSkinSkin TransplantationT-LymphocytesTransplantation, HomologousVascular Cell Adhesion Molecule-1ConceptsPeripheral blood mononuclear cellsHuman peripheral blood mononuclear cellsSkin allograft modelMicrovascular injuryT cellsCell infiltrateAllograft modelWhole peripheral blood mononuclear cellsT cell-dependent mechanismT cell-mediated rejectionHuman natural killer cellsSCID/beige miceEndothelial cell sloughingT Cell-MediatedCell-mediated rejectionCombination of cyclosporineT-cell infiltratesCell-dependent mechanismMononuclear cell infiltrateNatural killer cellsMononuclear cell infiltrationBlood mononuclear cellsSkin graft modelHuman immune responseImmunoglobulin G antibodies
1997
Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor.
Mach F, Schönbeck U, Bonnefoy J, Pober J, Libby P. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation 1997, 96: 396-9. PMID: 9244201, DOI: 10.1161/01.cir.96.2.396.Peer-Reviewed Original ResearchConceptsLigation of CD40Tissue factorMacrophage functionMonocyte/macrophage functionAcute coronary eventsAcute coronary syndromeAnti-CD40L antibodyHuman monocytes/macrophagesCytokine interleukin-1Mononuclear phagocyte functionMonocytes/macrophagesInduction of collagenaseActivated T cellsCoronary eventsCoronary syndromeMatrix-degrading proteinasesClinical manifestationsPlaque disruptionTumor necrosisT cell membranePlaque ruptureT cellsInterleukin-1Phagocyte functionReceptor CD40Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: Implications for CD40–CD40 ligand signaling in atherosclerosis
Mach F, Schönbeck U, Sukhova G, Bourcier T, Bonnefoy J, Pober J, Libby P. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: Implications for CD40–CD40 ligand signaling in atherosclerosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 1931-1936. PMID: 9050882, PMCID: PMC20020, DOI: 10.1073/pnas.94.5.1931.Peer-Reviewed Original ResearchMeSH KeywordsAntigens, Differentiation, T-LymphocyteArteriosclerosisB-LymphocytesBlotting, WesternCD40 AntigensCD40 LigandCells, CulturedEndothelium, VascularFlow CytometryGene Expression RegulationHumansImmunohistochemistryInterferon-gammaInterleukin-1MacrophagesMembrane GlycoproteinsMuscle, Smooth, VascularRNA, MessengerSignal TransductionTumor Necrosis Factor-alphaConceptsHuman vascular endothelial cellsSmooth muscle cellsVascular endothelial cellsHuman atherosclerotic lesionsHuman macrophagesCell typesEndothelial cellsMuscle cellsHuman vascular smooth muscle cellsVascular smooth muscle cellsDe novo synthesisCD40 ligandBroad functionsAtherosclerotic lesionsCD40 SignalingTumor necrosis factor alphaFunctional CD40 ligandInvolvement of inflammationCultured human vascular endothelial cellsCD40-CD40 ligandNovo synthesisNecrosis factor alphaParacrine activationNormal arterial tissueNovel sourceMechanism of sustained E-selectin expression in cultured human dermal microvascular endothelial cells.
Kluger MS, Johnson DR, Pober JS. Mechanism of sustained E-selectin expression in cultured human dermal microvascular endothelial cells. The Journal Of Immunology 1997, 158: 887-96. PMID: 8993008, DOI: 10.4049/jimmunol.158.2.887.Peer-Reviewed Original Research
1996
Transcriptional Regulation of the Interleukin-2 Gene in Normal Human Peripheral Blood T Cells CONVERGENCE OF COSTIMULATORY SIGNALS AND DIFFERENCES FROM TRANSFORMED T CELLS (∗)
Hughes C, Pober J. Transcriptional Regulation of the Interleukin-2 Gene in Normal Human Peripheral Blood T Cells CONVERGENCE OF COSTIMULATORY SIGNALS AND DIFFERENCES FROM TRANSFORMED T CELLS (∗). Journal Of Biological Chemistry 1996, 271: 5369-5377. PMID: 8621390, DOI: 10.1074/jbc.271.10.5369.Peer-Reviewed Original ResearchMeSH KeywordsB-LymphocytesBase SequenceBinding SitesCD3 ComplexCell Line, TransformedCell NucleusCells, CulturedFlow CytometryGene Expression RegulationHumansInterleukin-2KineticsLuciferasesLymphocyte ActivationMolecular Sequence DataNF-kappa BPromoter Regions, GeneticRecombinant ProteinsRegulatory Sequences, Nucleic AcidSignal TransductionT-LymphocytesTranscription FactorsTranscription, GeneticTransfectionTumor Cells, CulturedConceptsNormal T cellsT cellsCostimulatory signalsDifferent costimulatory signalsT cell receptorActivated T-cells (NFAT) sitesNormal human T cellsHuman T cellsT cell sitesTransformed T cellsCD2 antibodiesNF-kappaB siteAccessory cellsTumor cell linesCell receptorInterleukin-2 geneNuclear factorPrimary activationIL-2 promoterJurkat T cellsProximal AP-1 siteCell linesAntibodiesAP-1 siteTranscriptional regulation
1995
IL-4 induction of VCAM-1 on endothelial cells involves activation of a protein tyrosine kinase.
Palmer-Crocker RL, Pober JS. IL-4 induction of VCAM-1 on endothelial cells involves activation of a protein tyrosine kinase. The Journal Of Immunology 1995, 154: 2838-45. PMID: 7533184, DOI: 10.4049/jimmunol.154.6.2838.Peer-Reviewed Original ResearchConceptsVascular cell adhesion molecule-1VCAM-1 expressionEndothelial cellsIL-4 inductionIL-4IL-4R.Cell adhesion molecule-1Pretreatment of ECTreatment of ECIL-4 concentrationsAdhesion molecule-1Cultured human endothelial cellsHerbimycin ATime of treatmentHuman endothelial cellsTyrosine kinaseMolecule-1Western blotProtein tyrosine kinasesTyrosine phosphorylationIL-4-induced tyrosine phosphorylationAnti-phosphotyrosine immunoprecipitatesReplicate wells
1994
Antigen-presenting function of human endothelial cells. Direct activation of resting CD8 T cells.
Epperson DE, Pober JS. Antigen-presenting function of human endothelial cells. Direct activation of resting CD8 T cells. The Journal Of Immunology 1994, 153: 5402-12. PMID: 7989746, DOI: 10.4049/jimmunol.153.12.5402.Peer-Reviewed Original ResearchConceptsCD8 T cellsMemory CD8 T cellsT cell proliferative responsesAllogeneic endothelial cellsCell proliferative responsesT cellsAdhesion molecule-1Endothelial cellsCD8/IL-2Proliferative responseMolecule-1CD4 T cell proliferative responsesLate activation Ag-4Human CD8 T cellsVascular cell adhesion molecule-1Class II MHC expressionIntercellular adhesion molecule-1Cell adhesion molecule-1CD4 T cellsIFN-gamma secretionOrgan graft rejectionIL-2R alpha subunitIntercellular adhesion molecule-2CD8 cells
1993
Tumor necrosis factor activates human endothelial cells through the p55 tumor necrosis factor receptor but the p75 receptor contributes to activation at low tumor necrosis factor concentration.
Slowik MR, De Luca LG, Fiers W, Pober JS. Tumor necrosis factor activates human endothelial cells through the p55 tumor necrosis factor receptor but the p75 receptor contributes to activation at low tumor necrosis factor concentration. American Journal Of Pathology 1993, 143: 1724-30. PMID: 7504889, PMCID: PMC1887273.Peer-Reviewed Original ResearchConceptsEndothelial leukocyte adhesion molecule-1Endothelial cellsHuman endothelial cellsTumor necrosis factor concentrationsMonoclonal antibodiesNecrosis factor concentrationsLeukocyte adhesion molecule-1Major histocompatibility complex moleculesActivation of ECTumor necrosis factorAdhesion molecule-1Class I major histocompatibility complex moleculesLeukocyte adhesion moleculesTumor necrosis factor receptorELAM-1 inductionRecombinant human TNFHistocompatibility complex moleculesNecrosis factor receptorCultured endothelial cellsP75 receptorTumor necrosisNecrosis factorMolecule-1Receptor typesTNF receptorHUMAN CD4+ T CELLS PROLIFERATE TO HLA-DR+ ALLOGENEIC VASCULAR ENDOTHELIUM
SAVAGE C, HUGHES C, MCINTYRE B, PICARD J, POBER J. HUMAN CD4+ T CELLS PROLIFERATE TO HLA-DR+ ALLOGENEIC VASCULAR ENDOTHELIUM. Transplantation 1993, 56: 128-134. PMID: 7687392, DOI: 10.1097/00007890-199307000-00024.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, MonoclonalAntigens, CDAntigens, Differentiation, T-LymphocyteCD2 AntigensCD4 AntigensCD58 AntigensCells, CulturedEndothelium, VascularFlow CytometryHistocompatibility Antigens Class IHLA-DR AntigensHumansInterferon-gammaLymphocyte ActivationMembrane GlycoproteinsPolymerase Chain ReactionReceptors, ImmunologicRecombinant ProteinsT-Lymphocyte SubsetsTransplantation, HomologousUmbilical VeinsConceptsHLA-DR expressing cellsT cellsHLA-DRPolymerase chain reactionEC culturesAllogeneic class II MHC moleculesMHC moleculesLFA-1 beta chainLFA-1Peripheral blood CD4VLA-4 alphaMHC class II moleculesT cell responsesClass II MHC moleculesT cell surface moleculesT cell proliferationClass I MHC moleculesExpressing cellsClass II moleculesBeta chainII MHC moleculesDe novo expressionI MHC moleculesAllogeneic proliferationBlood CD4
1990
Tumor necrosis factor and immune interferon synergistically increase transcription of HLA class I heavy- and light-chain genes in vascular endothelium.
Johnson DR, Pober JS. Tumor necrosis factor and immune interferon synergistically increase transcription of HLA class I heavy- and light-chain genes in vascular endothelium. Proceedings Of The National Academy Of Sciences Of The United States Of America 1990, 87: 5183-5187. PMID: 2164225, PMCID: PMC54286, DOI: 10.1073/pnas.87.13.5183.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceCell NucleusCells, CulturedDrug SynergismEndothelium, VascularFlow CytometryGenes, MHC Class IHistocompatibility Antigens Class IHumansInterferon Type IInterferon-gammaMacromolecular SubstancesMolecular Sequence DataReceptors, Cell SurfaceReceptors, Tumor Necrosis FactorRecombinant ProteinsRNA, MessengerSequence Homology, Nucleic AcidTranscription, GeneticTumor Necrosis Factor-alphaConceptsNecrosis factorHuman endothelial cellsEndothelial cellsClass IInterferon gammaImmune interferonMRNA levelsMajor histocompatibility complex moleculesTumor necrosis factorHLA class IClass I major histocompatibility complex moleculesCultured human endothelial cellsHistocompatibility complex moleculesUntreated endothelial cellsSynergistic increase