2021
RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination
Gan T, Wang Y, Liu Y, Schatz DG, Hu J. RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination. Cell Reports 2021, 37: 109824. PMID: 34644584, PMCID: PMC8783374, DOI: 10.1016/j.celrep.2021.109824.Peer-Reviewed Original ResearchSarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for V(D)J recombination
Chen CC, Chen BR, Wang Y, Curman P, Beilinson HA, Brecht RM, Liu CC, Farrell RJ, de Juan-Sanz J, Charbonnier LM, Kajimura S, Ryan TA, Schatz DG, Chatila TA, Wikstrom JD, Tyler JK, Sleckman BP. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for V(D)J recombination. Journal Of Experimental Medicine 2021, 218: e20201708. PMID: 34033676, PMCID: PMC8155808, DOI: 10.1084/jem.20201708.Peer-Reviewed Original ResearchConceptsRAG2 gene expressionSarco/endoplasmic reticulum Ca2Gene expressionEndoplasmic reticulum Ca2ER Ca2ER transmembrane proteinExpression of SERCA3Mature B cellsER lumenCytosolic Ca2Transmembrane proteinCRISPR/PreB cellsDNA cleavageB cellsReticulum Ca2SERCA proteinATPase activityProteinProfound blockATP2A2 mutationsRAG1Recombination
2020
Nucleolar localization of RAG1 modulates V(D)J recombination activity
Brecht RM, Liu CC, Beilinson HA, Khitun A, Slavoff SA, Schatz DG. Nucleolar localization of RAG1 modulates V(D)J recombination activity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 4300-4309. PMID: 32047031, PMCID: PMC7049140, DOI: 10.1073/pnas.1920021117.Peer-Reviewed Original ResearchConceptsNucleolar localizationProximity-dependent biotin identificationRecombination activityDisruption of nucleoliDiscrete gene segmentsAntigen receptor lociPre-B cell linesNegative regulatory mechanismsN-terminal regionAmino acids 216Biotin identificationLocalization motifNucleolar associationProtein complexesNucleolar proteinsNucleolar sequestrationT-cell receptor genesRegulatory mechanismsNucleolar markerReceptor locusEfficient egressRAG1Amino acidsGene segmentsReceptor gene
2017
New insights into the evolutionary origins of the recombination‐activating gene proteins and V(D)J recombination
Carmona LM, Schatz DG. New insights into the evolutionary origins of the recombination‐activating gene proteins and V(D)J recombination. The FEBS Journal 2017, 284: 1590-1605. PMID: 27973733, PMCID: PMC5459667, DOI: 10.1111/febs.13990.Peer-Reviewed Original ResearchConceptsTransposable elementsEvolutionary originRAG proteinsAbsence of RAG2Independent evolutionary originsBasal chordate amphioxusRecombination-activating gene (RAG) proteinsFamily of transposasesAntigen receptor genesRAG transposonChordate amphioxusJawed vertebratesSequence similarityEvolutionary relativesProteins RAG1RAG genesGene proteinRAG1Gene segmentsDiverse arrayMechanistic linkProteinRAG2Adaptive immune systemDNA cleavage reaction
2016
RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2
Maman Y, Teng G, Seth R, Kleinstein SH, Schatz DG. RAG1 targeting in the genome is dominated by chromatin interactions mediated by the non-core regions of RAG1 and RAG2. Nucleic Acids Research 2016, 44: 9624-9637. PMID: 27436288, PMCID: PMC5175335, DOI: 10.1093/nar/gkw633.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBinding SitesChromatinChromatin ImmunoprecipitationGenomeGenomic InstabilityHigh-Throughput Nucleotide SequencingHistonesHomeodomain ProteinsHumansMiceNucleotide MotifsPromoter Regions, GeneticProtein BindingProtein Interaction Domains and MotifsRecombination, GeneticV(D)J RecombinationConceptsAntigen receptor lociNon-core regionsReceptor locusPlant homeodomain (PHD) fingerChIP-seq dataWide bindingChromatin interactionsAdditional chromatinLysine 4Off-target activityGenomic featuresHistone 3Novel roleRAG1LociChromatinGenomeRAG2Observed patternsDistinct modesBindingH3K4me3H3K27acEndonucleaseRelative contribution
2015
Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination
Shetty K, Schatz DG. Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination. Molecular And Cellular Biology 2015, 35: 3701-3713. PMID: 26303526, PMCID: PMC4589606, DOI: 10.1128/mcb.00219-15.Peer-Reviewed Original ResearchConceptsConserved heptamerRAG2 proteinsChromatin immunoprecipitationNonamer elementsRecombination substratesSignal sequenceNonamer sequencesMutant formsCryptic RSSsRAG1DNA cleavageGene segmentsChromatinCell linesRAG2ProteinRecruitmentRecombinationSequenceMajor roleMutagenesisImmunoprecipitationRepeatsRSSsRAGRAG Represents a Widespread Threat to the Lymphocyte Genome
Teng G, Maman Y, Resch W, Kim M, Yamane A, Qian J, Kieffer-Kwon KR, Mandal M, Ji Y, Meffre E, Clark MR, Cowell LG, Casellas R, Schatz DG. RAG Represents a Widespread Threat to the Lymphocyte Genome. Cell 2015, 162: 751-765. PMID: 26234156, PMCID: PMC4537821, DOI: 10.1016/j.cell.2015.07.009.Peer-Reviewed Original ResearchConceptsRecombination signalsStrong recombination signalGenome stabilityHuman genomeActive promotersGenomeDNA damageChromosomal translocationsCleavage siteWidespread threatRAG1Lymphocyte genomeEvolutionary struggleRecombinationRAGChromatinPromoterEndonucleaseSitesRAG2TranslocationAbundanceDepletionEnhancerHeptamerMapping and Quantitation of the Interaction between the Recombination Activating Gene Proteins RAG1 and RAG2* ♦
Zhang YH, Shetty K, Surleac MD, Petrescu AJ, Schatz DG. Mapping and Quantitation of the Interaction between the Recombination Activating Gene Proteins RAG1 and RAG2* ♦. Journal Of Biological Chemistry 2015, 290: 11802-11817. PMID: 25745109, PMCID: PMC4424321, DOI: 10.1074/jbc.m115.638627.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCatalytic DomainDNA-Binding ProteinsGene Expression RegulationGenome, HumanHEK293 CellsHomeodomain ProteinsHumansInterferometryMaleMiceMice, Inbred C57BLMolecular Sequence DataMutationNuclear ProteinsProtein BindingProtein Interaction MappingProtein Structure, SecondaryThymus GlandV(D)J RecombinationVDJ RecombinasesConceptsRegion of RAG1Α-helixZinc finger regionResidues N-terminalActive siteAcidic amino acidsPulldown assaysAccessory factorsHermes transposaseProteins RAG1Finger regionRAG activityQuantitative Western blottingC-terminusRAG endonucleaseN-terminalCatalytic functionRAG1Amino acidsDNA cleavageRAG2Nuclear concentrationRecombination activityCatalytic centerBiolayer interferometry
2013
Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA
Little AJ, Corbett E, Ortega F, Schatz DG. Cooperative recruitment of HMGB1 during V(D)J recombination through interactions with RAG1 and DNA. Nucleic Acids Research 2013, 41: 3289-3301. PMID: 23325855, PMCID: PMC3597659, DOI: 10.1093/nar/gks1461.Peer-Reviewed Original ResearchConceptsRecombination signal sequencesFluorescence anisotropy experimentsRAG-RSS complexesHigh mobility group box proteinAbsence of DNAGroup box proteinArchitectural proteinsPulldown experimentsRAG2 bindBox proteinSignal sequenceCooperative recruitmentComplex assemblyRecombinase complexStable integrationSequence specificitySynergistic binding effectAnisotropy experimentsAddition of DNAOrder of eventsRAG1DNAHMGB1 proteinProteinConcentration-dependent manner
2012
A Dual Interaction between the DNA Damage Response Protein MDC1 and the RAG1 Subunit of the V(D)J Recombinase*
Coster G, Gold A, Chen D, Schatz DG, Goldberg M. A Dual Interaction between the DNA Damage Response Protein MDC1 and the RAG1 Subunit of the V(D)J Recombinase*. Journal Of Biological Chemistry 2012, 287: 36488-36498. PMID: 22942284, PMCID: PMC3476314, DOI: 10.1074/jbc.m112.402487.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid MotifsBRCA1 ProteinCell Cycle ProteinsCell Line, TumorHistonesHomeodomain ProteinsHumansModels, BiologicalNuclear ProteinsPeptide MappingPhosphorylationProtein Structure, TertiaryRepetitive Sequences, Amino AcidTrans-ActivatorsVDJ RecombinasesConceptsDNA double-strand breaksDNA damage responseTandem BRCA1 C-terminal (BRCT) domainsC-terminusSpecific DNA double-strand breaksBRCA1 C-terminal domainC-terminal domainThreonine-rich repeatsDouble-strand breaksRAG1 subunitRAG recombinaseRAG2 proteinsDDR proteinsDamage responseRegulatory signalsBinding interfaceBreak siteHistone H2AXRAG activityRich repeatsNon-core regionsMDC1RAG1PhosphorylationSubsequent signal amplification
2011
V(D)J Recombination: Mechanisms of Initiation
Schatz DG, Swanson PC. V(D)J Recombination: Mechanisms of Initiation. Annual Review Of Genetics 2011, 45: 167-202. PMID: 21854230, DOI: 10.1146/annurev-genet-110410-132552.Peer-Reviewed Original ResearchConceptsProtein-DNA complexesUbiquitin ligase activityHistone recognitionDomain organizationRAG proteinsRAG2 proteinsLigase activityT-cell receptor genesRecombination signalsDNA breaksHeptamer sequenceLymphocyte developmentDNA breakageDNA cleavageGene segmentsFunctional significanceProper repairReceptor geneRAG1ProteinRecombinationMechanism of initiationComplexesRecent advancesGenes
2010
The In Vivo Pattern of Binding of RAG1 and RAG2 to Antigen Receptor Loci
Ji Y, Resch W, Corbett E, Yamane A, Casellas R, Schatz DG. The In Vivo Pattern of Binding of RAG1 and RAG2 to Antigen Receptor Loci. Cell 2010, 141: 419-431. PMID: 20398922, PMCID: PMC2879619, DOI: 10.1016/j.cell.2010.03.010.Peer-Reviewed Original ResearchConceptsJ gene segmentsRAG proteinsGene segmentsSignal sequenceLineage-specific mannerAntigen receptor lociRecombination signal sequencesLysine 4Active chromatinRAG2 bindThousands of sitesHistone 3Receptor locusDevelopmental stagesD gene segmentsDiscrete sitesCritical initial stepVivo patternRAG1BindingRAG2Beta JProteinRecombinationSpecific binding
2009
Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis
Yin FF, Bailey S, Innis CA, Ciubotaru M, Kamtekar S, Steitz TA, Schatz DG. Structure of the RAG1 nonamer binding domain with DNA reveals a dimer that mediates DNA synapsis. Nature Structural & Molecular Biology 2009, 16: 499-508. PMID: 19396172, PMCID: PMC2715281, DOI: 10.1038/nsmb.1593.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAnimalsBase SequenceChromosome PairingCrystallography, X-RayDNAFluorescence Resonance Energy TransferHomeodomain ProteinsMiceModels, MolecularMolecular Sequence DataNucleic Acid ConformationProtein MultimerizationProtein Structure, QuaternaryProtein Structure, TertiarySolutionsStatic Electricity
2005
Biochemistry of V(D)J Recombination
Schatz DG, Spanopoulou E. Biochemistry of V(D)J Recombination. Current Topics In Microbiology And Immunology 2005, 290: 49-85. PMID: 16480039, DOI: 10.1007/3-540-26363-2_4.Peer-Reviewed Original Research
2004
Antigen receptor genes and the evolution of a recombinase
Schatz DG. Antigen receptor genes and the evolution of a recombinase. Seminars In Immunology 2004, 16: 245-256. PMID: 15522623, DOI: 10.1016/j.smim.2004.08.004.Peer-Reviewed Original ResearchConceptsAntigen receptor genesReceptor geneDNA repair factorsSite-specific recombination reactionRAG transposonVertebrate genomesJawed vertebratesEvolutionary implicationsRAG2 proteinsTransposable elementsRepair factorsGenesAdaptive immune systemHorizontal transmissionRAG1VertebratesGenomeImmune systemTransposonGermlineRecombinaseRAG2ProteinRecombination reactionRecombination
2003
Regulation of RAG1/RAG2‐mediated transposition by GTP and the C‐terminal region of RAG2
Tsai C, Schatz DG. Regulation of RAG1/RAG2‐mediated transposition by GTP and the C‐terminal region of RAG2. The EMBO Journal 2003, 22: 1922-1930. PMID: 12682024, PMCID: PMC154477, DOI: 10.1093/emboj/cdg185.Peer-Reviewed Original ResearchConceptsFull-length RAG2RAG2 proteinsRegulatory mechanismsC-terminal regionRAG proteinsHybrid joint formationDNA recognitionDNA transpositionCleavage functionChromosomal translocationsGTPUnknown mechanismRAG2ProteinTarget DNAPhysiological concentrationsRegulationJoint formationRAGRAG1MechanismTranslocationDNAGuanineTransposition
2002
RAG1-DNA Binding in V(D)J Recombination SPECIFICITY AND DNA-INDUCED CONFORMATIONAL CHANGES REVEALED BY FLUORESCENCE AND CD SPECTROSCOPY*
Ciubotaru M, Ptaszek LM, Baker GA, Baker SN, Bright FV, Schatz DG. RAG1-DNA Binding in V(D)J Recombination SPECIFICITY AND DNA-INDUCED CONFORMATIONAL CHANGES REVEALED BY FLUORESCENCE AND CD SPECTROSCOPY*. Journal Of Biological Chemistry 2002, 278: 5584-5596. PMID: 12488446, DOI: 10.1074/jbc.m209758200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBinding SitesCircular DichroismCloning, MolecularDNADNA NucleotidyltransferasesDNA-Binding ProteinsEscherichia coliGenes, RAG-1Homeodomain ProteinsKineticsMiceOligodeoxyribonucleotidesProtein ConformationRecombinant ProteinsRecombination, GeneticSubstrate SpecificityTransfectionTransposasesVDJ RecombinasesConceptsRecombination signal sequencesConformational changesSynaptic complex formationAbsence of DNAAssembly of immunoglobulinMajor conformational changesIntrinsic protein fluorophoresProtein intrinsic fluorescenceSolvent-exposed environmentRAG2 proteinsRAG1/2 complexSingle DNA moleculesRAG1 proteinSignal sequenceAcrylamide quenching studiesT-cell receptor genesStrep-tagRecombination specificityDNA moleculesProtein fluorophoresRAG1Receptor geneProteinIntrinsic fluorescenceCircular dichroism
2001
Identification of Basic Residues in RAG2 Critical for DNA Binding by the RAG1-RAG2 Complex
Fugmann S, Schatz D. Identification of Basic Residues in RAG2 Critical for DNA Binding by the RAG1-RAG2 Complex. Molecular Cell 2001, 8: 899-910. PMID: 11684024, DOI: 10.1016/s1097-2765(01)00352-5.Peer-Reviewed Original ResearchConceptsDNA bindingRAG2 proteinsCognate DNA target sequenceDNA target sequencesResidue mutantsMolecular roleBasic residuesDNA cleavageTarget sequenceRAG1Biochemical analysisRAG2BindingCentral roleProteinRecombinationResiduesDirect involvementEssential componentComplexesMutantsCleavage reactionIdentificationRoleSequence
2000
Identification of Two Catalytic Residues in RAG1 that Define a Single Active Site within the RAG1/RAG2 Protein Complex
Fugmann S, Villey I, Ptaszek L, Schatz D. Identification of Two Catalytic Residues in RAG1 that Define a Single Active Site within the RAG1/RAG2 Protein Complex. Molecular Cell 2000, 5: 97-107. PMID: 10678172, DOI: 10.1016/s1097-2765(00)80406-2.Peer-Reviewed Original ResearchConceptsActive siteDivalent metal ionsSingle active siteMetal ionsTransfer reactionsActive site regionProtein complexesBond breakageCatalysisCatalytic functionRegion of RAG1Strand transfer reactionSecondary structure prediction algorithmsAspartic acid residuesCatalytic residuesRAG2 proteinsComplexesStructure prediction algorithmsPossible structural similaritySite regionAcid residuesRetroviral integrasesRAG1Structural similarityIons
1999
A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2
Rodgers K, Villey I, Ptaszek L, Corbett E, Schatz D, Coleman J. A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2. Nucleic Acids Research 1999, 27: 2938-2946. PMID: 10390537, PMCID: PMC148510, DOI: 10.1093/nar/27.14.2938.Peer-Reviewed Original ResearchConceptsRecombination signal sequencesSignal sequenceCore RAG1RAG1/RAG2 complexAbsence of RAG2Lymphoid-specific proteinsElectrophoretic mobility shift assaysSingle recombination signal sequencesMobility shift assaysRAG1 proteinProteins RAG1DNA sequencesMinimal speciesShift assaysOligomeric complexesHeptamer sequenceCompetition assaysRAG1Escherichia coliOligomeric formsRAG2Cleavage activityHMG2ProteinJ region