2020
Disease-associated CTNNBL1 mutation impairs somatic hypermutation by decreasing nuclear AID
Kuhny M, Forbes LR, Çakan E, Vega-Loza A, Kostiuk V, Dinesh RK, Glauzy S, Stray-Pedersen A, Pezzi AE, Hanson IC, Vargas-Hernandez A, Xu ML, Akdemir Z, Jhangiani SN, Muzny DM, Gibbs RA, Lupski JR, Chinn IK, Schatz DG, Orange JS, Meffre E. Disease-associated CTNNBL1 mutation impairs somatic hypermutation by decreasing nuclear AID. Journal Of Clinical Investigation 2020, 130: 4411-4422. PMID: 32484799, PMCID: PMC7410074, DOI: 10.1172/jci131297.Peer-Reviewed Original ResearchConceptsB cellsActivation-induced cytidine deaminaseHealthy donor counterpartsIsotype-switched B cellsCommon variable immunodeficiencyMemory B cellsSomatic hypermutationAutoimmune cytopeniasDecreased incidenceVariable immunodeficiencyB cell linesUnderlying molecular defectsNuclear AIDPatient's EBVRamos B cellsPatientsProtein 1Cell linesMolecular defectsCellsCytidine deaminaseMutations
2015
Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination
Shetty K, Schatz DG. Recruitment of RAG1 and RAG2 to Chromatinized DNA during V(D)J Recombination. Molecular And Cellular Biology 2015, 35: 3701-3713. PMID: 26303526, PMCID: PMC4589606, DOI: 10.1128/mcb.00219-15.Peer-Reviewed Original ResearchConceptsConserved heptamerRAG2 proteinsChromatin immunoprecipitationNonamer elementsRecombination substratesSignal sequenceNonamer sequencesMutant formsCryptic RSSsRAG1DNA cleavageGene segmentsChromatinCell linesRAG2ProteinRecruitmentRecombinationSequenceMajor roleMutagenesisImmunoprecipitationRepeatsRSSsRAG
2012
Dendritic cell–mediated activation-induced cytidine deaminase (AID)–dependent induction of genomic instability in human myeloma
Koduru S, Wong E, Strowig T, Sundaram R, Zhang L, Strout MP, Flavell RA, Schatz DG, Dhodapkar KM, Dhodapkar MV. Dendritic cell–mediated activation-induced cytidine deaminase (AID)–dependent induction of genomic instability in human myeloma. Blood 2012, 119: 2302-2309. PMID: 22234692, PMCID: PMC3311257, DOI: 10.1182/blood-2011-08-376236.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCell Line, TumorCell SurvivalCells, CulturedCoculture TechniquesCytidine DeaminaseDendritic CellsDNA Breaks, Double-StrandedFemaleGene Expression Regulation, EnzymologicGene Expression Regulation, NeoplasticGenomic InstabilityHumansInterleukin Receptor Common gamma SubunitMiceMice, Inbred NODMice, KnockoutMice, SCIDMultiple MyelomaNF-kappa BRANK LigandReverse Transcriptase Polymerase Chain ReactionTransplantation, HeterologousTumor Cells, CulturedConceptsInduction of AIDMultiple myelomaTumor microenvironmentTumor cellsReceptor activatorActivation-induced cytidine deaminaseDendritic cell infiltrationCapacity of DCPrimary MM cellsNF-κB/receptor activatorGenetics of tumorsGrowth of tumorsGenomic damageMyeloma cell linesRANKL inhibitionPlasmacytoid DCsIndolent behaviorCell infiltrationMM cellsHuman myelomaCytidine deaminaseMyelomaDNA double-strand breaksGenomic instabilityCell lines
2006
Mobilization of RAG-Generated Signal Ends by Transposition and Insertion In Vivo
Chatterji M, Tsai CL, Schatz DG. Mobilization of RAG-Generated Signal Ends by Transposition and Insertion In Vivo. Molecular And Cellular Biology 2006, 26: 1558-1568. PMID: 16449665, PMCID: PMC1367191, DOI: 10.1128/mcb.26.4.1558-1568.2006.Peer-Reviewed Original ResearchConceptsRAG proteinsVertebrate cellsTransposition eventsEnd fragmentsFull-length RAG2Embryonic kidney cell lineHuman embryonic kidney cell lineTarget site duplicationsGenome instabilityHuman genomeSignal endsKidney cell lineGenomic instabilityTranslocation eventsSite duplicationsChromosomal translocationsDNA cleavageComplex rearrangementsChromosome deletionsEssential roleProteinCell linesEpisomesDeletionAssays
2005
Inducible Gene Expression Using an Autoregulatory, Tetracycline‐Controlled System
Shockett P, Schatz D. Inducible Gene Expression Using an Autoregulatory, Tetracycline‐Controlled System. Current Protocols In Cell Biology 2005, 27: 20.8.1-20.8.10. PMID: 18228465, DOI: 10.1002/0471143030.cb2008s27.Peer-Reviewed Original ResearchConceptsInducible gene expressionSelectable markerGene expressionSecond selectable markerCell linesFibroblast cell lineTransient transfectionGene protein expressionResultant clonesStable linesMarker plasmidPlasmidProtein expressionAdherent cellsTransactivatorExpressionTransfectionCellsTargetGenesSupport protocolClonesLinesMarkersAutoregulatory
2002
Inducible Gene Expression Using an Autoregulatory, Tetracycline‐Controlled System
Shockett P, Schatz D. Inducible Gene Expression Using an Autoregulatory, Tetracycline‐Controlled System. Current Protocols In Molecular Biology 2002, 60: 16.14.1-16.14.9. PMID: 18265300, DOI: 10.1002/0471142727.mb1614s60.Peer-Reviewed Original ResearchConceptsInducible gene expressionSelectable markerGene expressionSecond selectable markerCell linesFibroblast cell lineTransient transfectionGene protein expressionResultant clonesStable linesMarker plasmidPlasmidProtein expressionAdherent cellsTransactivatorExpressionTransfectionCellsTargetGenesSupport protocolClonesLinesMarkersAutoregulatory
1997
Identification of V(D)J recombination coding end intermediates in normal thymocytes 11Edited by K. Yamamoto
Livák F, Schatz D. Identification of V(D)J recombination coding end intermediates in normal thymocytes 11Edited by K. Yamamoto. Journal Of Molecular Biology 1997, 267: 1-9. PMID: 9096202, DOI: 10.1006/jmbi.1996.0834.Peer-Reviewed Original ResearchConceptsRecombination signal sequencesNormal lymphoid precursorsSignal endsJ alpha genesPre-B cell linesGene rearrangement processDouble-strand breaksNormal murine thymocytesSignal sequenceLymphoid precursorsK. YamamotoAlpha geneFirst direct demonstrationHairpin structureLow abundanceStrand breaksGene segmentsCell linesAntigen receptorMurine thymocytesRecombinationDirect demonstrationVivoJoint formationNormal thymocytes
1996
Initiation of V(D)J recombination in vitro obeying the 12/23 rule
Eastman Q, Leu T, Schatz D. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 1996, 380: 85-88. PMID: 8598914, DOI: 10.1038/380085a0.Peer-Reviewed Original Research
1995
rag-1 and rag-2 Are Components of a High-Molecular-Weight Complex, and Association of rag-2 with This Complex Is rag-1 Dependent
Leu T, Schatz D. rag-1 and rag-2 Are Components of a High-Molecular-Weight Complex, and Association of rag-2 with This Complex Is rag-1 Dependent. Molecular And Cellular Biology 1995, 15: 5657-5670. PMID: 7565717, PMCID: PMC230816, DOI: 10.1128/mcb.15.10.5657.Peer-Reviewed Original ResearchConceptsRAG-2RAG-1RAG-2 proteinRAG proteinsSubcellular localizationBiological functionsIntracellular complexesWeight complexesLymphocyte developmentSized complexesBiochemical propertiesProteinCell linesSame complexHigh salt concentrationsSynergistic functionImmunological reagentsNuclear structureComplexesCoimmunoprecipitationHigh-MolecularMore moleculesHigh levelsRecombinationSalt concentrationA modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice.
Shockett P, Difilippantonio M, Hellman N, Schatz DG. A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proceedings Of The National Academy Of Sciences Of The United States Of America 1995, 92: 6522-6526. PMID: 7604026, PMCID: PMC41550, DOI: 10.1073/pnas.92.14.6522.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAnimalsBlotting, WesternCells, CulturedDNA NucleotidyltransferasesGene Expression RegulationHerpes Simplex Virus Protein Vmw65MiceMice, TransgenicOpen Reading FramesPlasmidsRecombinant Fusion ProteinsRepressor ProteinsRestriction MappingRNA, MessengerSequence DeletionTetracyclineTrans-ActivatorsTransfectionVDJ RecombinasesConceptsInducible gene expressionGene expressionTetracycline-regulated gene expressionTranscriptional activation domainCultured cellsTetracycline-regulated systemTransgenic miceExpression of tTAAutoregulatory systemActivation domainTTA geneInducible promoterTetracycline repressorInducible expressionFusion proteinTransactivator proteinConstitutive expressionTransgenic animalsGene 1Induced levelsRecombination activityMost tissuesConstitutive systemProteinCell lines
1992
The recombination activating genes, RAG 1 and RAG 2, are on chromosome 11p in humans and chromosome 2p in mice
Oettinger M, Stanger B, Schatz D, Glaser T, Call K, Housman D, Baltimore D. The recombination activating genes, RAG 1 and RAG 2, are on chromosome 11p in humans and chromosome 2p in mice. Immunogenetics 1992, 35: 97-101. PMID: 1735560, DOI: 10.1007/bf00189518.Peer-Reviewed Original ResearchConceptsRAG locusChromosome 11pRAG-2RAG-1Human chromosome 11pGenes RAG-1Hybrid cell linesJoining (V(D)J) recombinationChromosomal localizationChromosomal locationAdjacent genesCell hybridsHuman recombinationSouthern analysisChromosome 11Human diseasesGenesChromosome 2pLociCell linesRetardation syndromeRecombinationDeletionHybridsLocalization
1991
Selective expression of RAG-2 in chicken B cells undergoing immunoglobulin gene conversion
Carlson L, Oettinger M, Schatz D, Masteller E, Hurley E, McCormack W, Baltimore D, Thompson C. Selective expression of RAG-2 in chicken B cells undergoing immunoglobulin gene conversion. Cell 1991, 64: 201-208. PMID: 1986866, DOI: 10.1016/0092-8674(91)90221-j.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsB-LymphocytesBlotting, NorthernBursa of FabriciusCell LineChickensCloning, MolecularFlow CytometryGene ConversionGene ExpressionGene Expression RegulationGenes, ImmunoglobulinHumansMolecular Sequence DataNucleic Acid HybridizationRecombination, GeneticRNA, MessengerSpleenThymus GlandConceptsIg gene conversionGene conversionChicken B cellsRAG-2 mRNARAG-2Cis-acting DNA elementsChicken B cell lineRAG-1Mammalian B cellsIntrachromosomal gene conversionImmunoglobulin gene conversionRAG-2 expressionB cell developmentIg diversificationRAG-1 mRNADNA elementsCell developmentB cell linesBursa of FabriciusB cellsPhenotypic characteristicsSelective expressionCell linesBursal lymphocytesMRNA
1988
Stable expression of immunoglobulin gene V(D)J recombinase activity by gene transfer into 3T3 fibroblasts
Schatz D, Baltimore D. Stable expression of immunoglobulin gene V(D)J recombinase activity by gene transfer into 3T3 fibroblasts. Cell 1988, 53: 107-115. PMID: 3349523, DOI: 10.1016/0092-8674(88)90492-8.Peer-Reviewed Original Research
1987
Increased frequency of N-region insertion in a murine pre-B-cell line infected with a terminal deoxynucleotidyl transferase retroviral expression vector.
Landau NR, Schatz DG, Rosa M, Baltimore D. Increased frequency of N-region insertion in a murine pre-B-cell line infected with a terminal deoxynucleotidyl transferase retroviral expression vector. Molecular And Cellular Biology 1987, 7: 3237-3243. PMID: 3118194, PMCID: PMC367960, DOI: 10.1128/mcb.7.9.3237.Peer-Reviewed Original ResearchConceptsPre-B cell linesN-region insertionsRetroviral expression vectorExpression vectorCell linesMurine pre-B cell lineImmunoglobulin light chain genesNucleotide sequence analysisLight chain genesV-J junctionGene junctionSequence analysisImmunoglobulin genesGenesRearrangement substratesTerminal deoxynucleotidyl transferaseContinuous rearrangementApparent absenceJunctional sitesProvirusDeoxynucleotidyl transferaseRearrangementControl vectorN regionInsertionIncreased Frequency of N-Region Insertion in a Murine Pre-B-Cell Line Infected with a Terminal Deoxynucleotidyl Transferase Retroviral Expression Vector
Landau N, Schatz D, Rosa M, Baltimore D. Increased Frequency of N-Region Insertion in a Murine Pre-B-Cell Line Infected with a Terminal Deoxynucleotidyl Transferase Retroviral Expression Vector. Molecular And Cellular Biology 1987, 7: 3237-3243. DOI: 10.1128/mcb.7.9.3237-3243.1987.Peer-Reviewed Original ResearchPre-B cell linesN-region insertionsRetroviral expression vectorExpression vectorCell linesMurine pre-B cell lineImmunoglobulin light chain genesNucleotide sequence analysisLight chain genesV-J junctionGene junctionSequence analysisImmunoglobulin genesGenesRearrangement substratesTerminal deoxynucleotidyl transferaseContinuous rearrangementApparent absenceJunctional sitesProvirusDeoxynucleotidyl transferaseRearrangementControl vectorN regionInsertionIncreased Frequency of N-Region Insertion in a Murine Pre-B-Cell Line Infected with a Terminal Deoxynucleotidyl Transferase Retroviral Expression Vector
Landau N, Schatz D, Rosa M, Baltimore D. Increased Frequency of N-Region Insertion in a Murine Pre-B-Cell Line Infected with a Terminal Deoxynucleotidyl Transferase Retroviral Expression Vector. Molecular And Cellular Biology 1987, 7: 3237-3243. DOI: 10.1128/mcb.7.9.3237-3243.1987.Peer-Reviewed Original ResearchPre-B-cell lineN-region insertionsCell linesExpression vectorRetroviral expression vectorImmunoglobulin light chain genesNucleotide sequence analysisV-J junctionLight chain genesGene junctionPre-B-cellSequence analysisMurine pre-B-cell lineTerminal deoxynucleotidyl transferaseRearranged genesImmunoglobulin genesJunction sitesN regionRearranged provirusesPresence of TdTGenesInfected cellsRearrangement substratesDeoxynucleotidyl transferaseNucleotide