Cancer vaccines utilizing mRNA vaccine technology have such potential that ARPA-H, a newly established White House-originated program, has made it the focus of its first ever grant, announced today. The total grant is $25 million over three years, to be split among teams at Emory University, Yale School of Medicine, and the University of Georgia. Research teams at the three institutions are working together to strive to harness the natural immune system for development of personalized therapeutic vaccines against cancer and emerging infections, along the lines of how the mRNA vaccine targets SARS-CoV-2.
As an outgrowth of President Biden’s Cancer Moonshot program against cancer, the administration recently launched a $2 billion research funding agency known as the Advanced Research Projects Agency for Health [ARPA-H]. The mission of this new federal agency is to catalyze field-shaping health science investigation and invention by accelerating exceptionally promising research programs.
A team led by principal investigator Philip Santangelo, PhD, professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, and prominently including as a co-principal investigator Richard Edelson, MD, Anthony N. Brady Professor of Dermatology at Yale School of Medicine, is the first to receive one of the agency’s three-year $25 million grants, with the Yale group receiving a $6.5 million portion. Combining Santangelo’s expertise in mRNA and Edelson’s in dendritic cells—the most prominent initiators of selective immune reactions—the multi-institutional team will be studying how to advance technology from the burgeoning mRNA vaccine field to program dendritic cells to produce therapeutic immune reactions, with personalized cancer vaccines as the ultimate goal.
The teams are working together to use mRNA—the essential element of vaccines that were developed to prevent COVID-19 infection—to program the dendritic cells to process antigenic proteins, thereby triggering selective immunological responses. “The mRNA teaches these dendritic cells how to ignite the desired systemic immune reaction,” says Edelson, former chair of Yale Dermatology and a past director of Yale Cancer Center. “Without understating the challenges ahead, the possibilities are immense.”