Ellen J. Hoffman, MD, PhD
Associate Professor in the Child Study CenterCards
Appointments
Contact Info
Child Study Center
PO Box 207900, 230 South Frontage Road
New Haven, CT 06520
United States
About
Titles
Associate Professor in the Child Study Center
Biography
Ellen J. Hoffman, M.D., Ph.D. was appointed as Assistant Professor in the Child Study Center in July 2015. Ellen is a child psychiatrist, psychiatric geneticist and neurobiologist, and a graduate of the Investigative Medicine PhD Program at Yale, who specializes in the functional analysis of genes in neurodevelopmental disorders. The Hoffman laboratory conducts translational research aimed at understanding the biological mechanisms underlying autism spectrum disorders and discovering new pharmacological treatments. Ellen's research focuses on investigating the function of genes that are strongly associated with autism to determine how disruption of these genes alters brain development and the neural circuits underlying simple behaviors. The long-term goal of her research is to use this gene-based approach to identify relevant biological pathways and novel pharmacological treatments that target these pathways. Ellen also works clinically as a child psychiatrist and as an attending supervising Yale child psychiatry fellows.
Appointments
Child Study Center
Associate Professor on TermPrimaryNeuroscience
Associate Professor on TermSecondary
Other Departments & Organizations
Education & Training
- PhD
- Yale University, Investigative Medicine (2014)
- Research Fellowship
- Yale University (2011)
- Fellowship
- Mount Sinai School of Medicine (2008)
- Residency
- Mount Sinai School of Medicine (2006)
- MD
- Stony Brook School of Medicine (2003)
- BS
- SUNY at Stonybrook (1999)
Research
Overview
Medical Research Interests
ORCID
0000-0002-5083-1369- View Lab Website
Hoffman Lab website
Research at a Glance
Yale Co-Authors
Publications Timeline
Research Interests
Abha Gupta, MD, PhD
Thomas Fernandez, MD
Tyrone DeSpenza Jr, MD, PhD
April Pruitt
Catherine Sullivan
Duy Phan, PhD
Zebrafish
Autistic Disorder
Publications
2025
Generation of stable brain cell cultures from embryonic zebrafish to interrogate phenotypes in zebrafish mutants of neurodevelopmental disorders
Odierna G, Stednitz S, Pruitt A, Arnold J, Hoffman E, Scott E. Generation of stable brain cell cultures from embryonic zebrafish to interrogate phenotypes in zebrafish mutants of neurodevelopmental disorders. Journal Of Neuroscience Methods 2025, 418: 110426. PMID: 40086601, DOI: 10.1016/j.jneumeth.2025.110426.Peer-Reviewed Original ResearchConceptsBrain cell culturesCell culturesCell typesNeuronal culture protocolCultured primary neuronsEmbryonic zebrafishPrimary brain cell culturesZebrafish mutantsCellular consequencesStructural hallmarksMature synaptic connectionsPrimary neuronsCell survivalMammalian tissuesTranscriptional signatureCell linesEmbryonic tissuesZebrafish neuronsZebrafishNeuron purityNeuronal culturesNetwork of neuronsMixed cell typeDays in vitroModel systemPTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors
DeSpenza T, Kiziltug E, Allington G, Barson D, McGee S, O’Connor D, Robert S, Mekbib K, Nanda P, Greenberg A, Singh A, Duy P, Mandino F, Zhao S, Lynn A, Reeves B, Marlier A, Getz S, Nelson-Williams C, Shimelis H, Walsh L, Zhang J, Wang W, Prina M, OuYang A, Abdulkareem A, Smith H, Shohfi J, Mehta N, Dennis E, Reduron L, Hong J, Butler W, Carter B, Deniz E, Lake E, Constable R, Sahin M, Srivastava S, Winden K, Hoffman E, Carlson M, Gunel M, Lifton R, Alper S, Jin S, Crair M, Moreno-De-Luca A, Luikart B, Kahle K. PTEN mutations impair CSF dynamics and cortical networks by dysregulating periventricular neural progenitors. Nature Neuroscience 2025, 28: 536-557. PMID: 39994410, DOI: 10.1038/s41593-024-01865-3.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsNeural progenitor cellsCongenital hydrocephalusCSF dynamicsIncreased CSF productionDe novo mutationsFrequent monogenic causeEverolimus treatmentCSF shuntingNonsurgical treatmentPTEN mutationsAqueductal stenosisInhibitory interneuronsVentriculomegalyProgenitor cellsChoroid plexusMonogenic causeCortical networksIncreased survivalBrain ventriclesCortical deficitsNeural progenitorsGene PTENCSF productionNkx2.1PTEN
2024
FROM THE BENCH TO THE BEDSIDE: EMERGING MECHANISMS IN ASD
Manoli D, Hoffman E, State M. FROM THE BENCH TO THE BEDSIDE: EMERGING MECHANISMS IN ASD. Journal Of The American Academy Of Child & Adolescent Psychiatry 2024, 63: s333. DOI: 10.1016/j.jaac.2024.07.716.Peer-Reviewed Original ResearchReview: Child Psychiatry in the Era of Genomics: The Promise of Translational Genetics Research for the Clinic
Fitzpatrick S, Antony I, Nurmi E, Fernandez T, Chung W, Brownstein C, Gonzalez-Heydrich J, Gur R, Merner A, Lázaro-Muñoz G, State M, Simon K, Hoffman E. Review: Child Psychiatry in the Era of Genomics: The Promise of Translational Genetics Research for the Clinic. JAACAP Open 2024 DOI: 10.1016/j.jaacop.2024.06.002.Peer-Reviewed Original ResearchConceptsGenetic testingHigh-confidence risk genesPsychiatric geneticsApproaches to gene discoveryGenetic researchTranslational genetic researchClinical genetic testingEra of genomicsWhole-exome sequencingChild psychiatric disordersGenetic architectureGene discoveryClinical evaluationPharmacogenetic testingExome sequencingRisk genesGenetic underpinningsGenetic findingsEarly-onset psychosisPsychiatric disordersGenetic conceptsGeneticsLack of familiarityClinical practiceObsessive-compulsive disorderPathogenic variants in autism gene KATNAL2 cause hydrocephalus and disrupt neuronal connectivity by impairing ciliary microtubule dynamics
DeSpenza T, Singh A, Allington G, Zhao S, Lee J, Kiziltug E, Prina M, Desmet N, Dang H, Fields J, Nelson-Williams C, Zhang J, Mekbib K, Dennis E, Mehta N, Duy P, Shimelis H, Walsh L, Marlier A, Deniz E, Lake E, Constable R, Hoffman E, Lifton R, Gulledge A, Fiering S, Moreno-De-Luca A, Haider S, Alper S, Jin S, Kahle K, Luikart B. Pathogenic variants in autism gene KATNAL2 cause hydrocephalus and disrupt neuronal connectivity by impairing ciliary microtubule dynamics. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2314702121. PMID: 38916997, PMCID: PMC11228466, DOI: 10.1073/pnas.2314702121.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsCongenital hydrocephalusCerebral ventriculomegalyPathogenic variantsPrefrontal pyramidal neuronsGenetic subsets of patientsDevelopment of ventriculomegalyRadial gliaSubsets of patientsHigh-frequency firingNeuronal connectivityHeterozygous germline variantsAutism spectrum disorderVentricular-subventricular zoneMicrotubule dynamicsImpaired spermatogenesisCSF shuntingExcitatory driveMicrotubule-severing ATPasePyramidal neuronsDisrupt neuronal connectivityGermline variantsVentriculomegalyCSF homeostasisDisrupt microtubule dynamicsPlanar cell polarity
2023
Brain Registration and Evaluation for Zebrafish (BREEZE)-mapping: A pipeline for whole-brain structural and activity analyses
Jin D, Neelakantan U, Lacadie C, Chen T, Rooney B, Liu Y, Wu W, Wang Z, Papademetris X, Hoffman E. Brain Registration and Evaluation for Zebrafish (BREEZE)-mapping: A pipeline for whole-brain structural and activity analyses. STAR Protocols 2023, 4: 102647. PMID: 37897734, PMCID: PMC10641303, DOI: 10.1016/j.xpro.2023.102647.Peer-Reviewed Original ResearchPrimary complex motor stereotypies are associated with de novo damaging DNA coding mutations that identify KDM5B as a risk gene
Fernandez T, Williams Z, Kline T, Rajendran S, Augustine F, Wright N, Sullivan C, Olfson E, Abdallah S, Liu W, Hoffman E, Gupta A, Singer H. Primary complex motor stereotypies are associated with de novo damaging DNA coding mutations that identify KDM5B as a risk gene. PLOS ONE 2023, 18: e0291978. PMID: 37788244, PMCID: PMC10547198, DOI: 10.1371/journal.pone.0291978.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsRisk genesDe novo damaging variantsGene expression patternsWhole-exome DNA sequencingMid-fetal developmentAdditional risk genesHigh-confidence risk genesParent-child triosGene OntologyCell signalingExpression patternsCalcium ion transportFunctional convergenceCell cycleDamaging variantsGenesDNA sequencingDe novoASD probandsGenetic etiologyBiological mechanismsSequencingDNANetwork analysisIon transportFrom Bench to Bedside: Neural, Molecular, and Genetic Mechanisms Contributing to ASD
Hoffman E, Manoli D, State M. From Bench to Bedside: Neural, Molecular, and Genetic Mechanisms Contributing to ASD. Journal Of The American Academy Of Child & Adolescent Psychiatry 2023, 62: s399-s400. DOI: 10.1016/j.jaac.2023.07.898.Peer-Reviewed Original ResearchHigh-throughput functional analysis of autism genes in zebrafish identifies convergence in dopaminergic and neuroimmune pathways
Mendes H, Neelakantan U, Liu Y, Fitzpatrick S, Chen T, Wu W, Pruitt A, Jin D, Jamadagni P, Carlson M, Lacadie C, Enriquez K, Li N, Zhao D, Ijaz S, Sakai C, Szi C, Rooney B, Ghosh M, Nwabudike I, Gorodezky A, Chowdhury S, Zaheer M, McLaughlin S, Fernandez J, Wu J, Eilbott J, Vander Wyk B, Rihel J, Papademetris X, Wang Z, Hoffman E. High-throughput functional analysis of autism genes in zebrafish identifies convergence in dopaminergic and neuroimmune pathways. Cell Reports 2023, 42: 112243. PMID: 36933215, PMCID: PMC10277173, DOI: 10.1016/j.celrep.2023.112243.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsGene lossFunctional analysisHigh-throughput functional analysisZebrafish mutantsGene discoverySelect mutantsASD genesAutism genesKey pathwaysASD biologyBrain size differencesMutantsGenesSize differencesPathwayGlobal increaseRelevant mechanismsBiologyCentral challengeNeuroimmune dysfunctionRegionFunctionDiscoveryAutism spectrum disorder
2021
Signaling Pathways and Sex Differential Processes in Autism Spectrum Disorder
Enriquez KD, Gupta AR, Hoffman EJ. Signaling Pathways and Sex Differential Processes in Autism Spectrum Disorder. Frontiers In Psychiatry 2021, 12: 716673. PMID: 34690830, PMCID: PMC8531220, DOI: 10.3389/fpsyt.2021.716673.Peer-Reviewed Original ResearchConceptsASD genetic studiesBiological pathwaysGenetic studiesRisk gene discoveryCellular pathways downstreamASD risk genesWhole-exome sequencing studiesCommon biological pathwaysGene discoveryPathways downstreamGene expressionSequencing studiesRisk genesMale biasPathwayGenesNeuronal communicationCommon pathwayPotential roleFemale protective effectNeurodevelopmental disordersRecent analysisTranscriptomicsGenomicsRecent investigations
News
News
- December 11, 2024
October 2024 YCSC Faculty Development Fund awardees announced
- September 16, 2024
Catalyzing Impact through Focused Research Funding: Ellen Hoffman
- June 10, 2024
Yale Child Study Center welcomes 2024 summer interns
- June 04, 2024
April 2024 YCSC Faculty Development Fund awardees announced
Get In Touch
Contacts
Child Study Center
PO Box 207900, 230 South Frontage Road
New Haven, CT 06520
United States
Events
- Yale Only
- Yale Only
- Yale Only
- Yale Only