Nigel S. Bamford, MD, FANA
Research & Publications
Biography
News
Research Summary
The striatum is a cluster of cells within the brain that helps execute normal movements and establishes goal directed behaviors. The symptoms of Parkinsonism and other debilitating neuropsychiatric disorders in children are caused by abnormal dopamine and acetylcholine availability in the striatum. Dr. Bamford’s laboratory investigations show how dopamine can trigger lasting changes in acetylcholine and will generate new pharmacological targets and treatments for parkinsonism and the dyskinetic motor movements that accompany treatment.
Extensive Research Description
Dr. Bamford has a strong track record of research funding, ranging from private grants to NIH. Dr. Bamford’s laboratory investigations focus on the function of the mammalian corticostriatal system. This system includes a collection of neurons that connect the cerebral cortex and striatum. The striatum plays an essential role in cognition, motor control, cue-dependent behaviors and abnormal function underlies aspects of numerous developmental, neurological, and psychiatric disorders, including Tourette syndrome, attention deficit–hyperactivity disorder, substance abuse, Parkinson’s disease, and Huntington’s disease. New treatments are needed and Bamford’s investigations offer critical insights into novel treatment options. In these disorders, too much or too little dopamine alters striatal excitation, resulting in clinical symptoms. To gain insight into synaptic plasticity induced by alterations in dopamine availability, the Bamford Lab combines behavioral investigations with optical, electrophysiological, biochemical, and immunohistochemical methods to determine the mechanisms underlying striatal modulation of glutamate release by dopamine, GABA, endocannabinoids, adenosine, and acetylcholine.
Since establishing his laboratory at the University of Washington in 2002, Dr. Bamford has published exceptional papers in Neuron, the Journal of Neuroscience, the Journal of Physiology, Annals of Neurology, and Nature Neuroscience. His work utilizes a novel technique, developed by Bamford and David Sulzer at Columbia University, which allows direct optical visualization of presynaptic cortical terminals in the striatum. This technique provides a robust way to measure kinetics of glutamate release from individual synaptic terminals. Investigations demonstrate that glutamate release from cortical projections in the motor striatum is directly regulated by dopamine, adenosine, and endocannabinoids. By regulating a subset of terminals, dopamine and these other neuromodulators alter the parallel processing of cortical inputs to the striatum, affecting striatal filtering of cortical information that leads to specific behaviors in mice (Neuron, 2004). Using dopamine-deficient mice and dopamine depleted mice, Bamford demonstrated that dopamine is not required during development for functional dopamine receptors. Dopamine depletion results in hypersensitive dopamine receptors that result in aberrant striatal function resulting in motor dyskinesias (Journal of Neuroscience, 2004).
Dopamine excess, as modeled by repeated use of the psychostimulants amphetamine and methamphetamine, produces a chronic striatal depression that is renormalized by drug reinstatement. This effect is dose dependent, long lasting (>140 days) and is dependent on a new D1 receptor effect seen only in animals with previous psychostimulant experience.During withdrawal, a psychostimulant challenge produces a paradoxical increase in glutamate release. This increase in glutamate from suppressed terminals correlates with locomotor sensitization and the model extends to drug intake escalation, both hallmarks of addiction (Neuron, 2008). These findings received wide press coverage and included reports on BBC National and World Radio, ABC, Washington Post, Science and Nature, New Scientist, and Scientific American.
In other studies, Bamford and co-workers found that the huntingtin mutation produces age-dependent alterations in corticostriatal activity that is paralleled by a decrease in dopamine D2 receptor modulation of the presynaptic terminal. Taken together, these findings point to dynamic alterations in the corticostriatal pathway and emphasize that therapies directed toward alleviating or preventing symptoms need to be specifically designed depending on the progression of the disorder (Journal of Neuroscience, 2008).
More recently, the Bamford lab showed how dopamine, endocannabinoids, and adenosine modulate frontal cortical projections to the nucleus accumbens (Journal of Physiology, 2012). In this study, workers combined optical recordings of presynaptic release with whole-cell electrophysiology in CB1 receptor-null mice and bacterial artificial chromosome (BAC) transgenic mice
Bamford also published a important article describing the behavioral effects of prenatal cocaine exposure (PCE) and the synaptic and biochemical mechanisms that might account for those behaviors (Annals of Neurology, 2013). PCE remains a serious health problem and can produce significant developmental and motor disabilities in affected humans. Observations in the clinic and laboratory strongly suggest that PCE causes corticostriatal dysfunction, but this important pathway has never been investigated. In this manuscript, Bamford and co-workers used a murine model for PCE to characterize abnormal dopamine-dependent behaviors and synaptic plasticity of the corticostriatal pathway. They found that PCE reduces body growth and modifies dopamine-dependent motor behaviors in adolescent mice. Abnormal motor-learning and blunted locomotor responses to repeated amphetamine were paralleled by a reversible GABA-dependent over-inhibition at corticostriatal synapses and a reduction in phasic dopamine release capacity. The release of dopamine promoted normal corticostriatal filtering in controls, but alleviated GABA-mediated inhibition and paradoxically increased corticostriatal activity in those mice with a history of PCE. While GABAA receptors had no effect on presynaptic corticostriatal activity in controls, their inhibition normalized synaptic function following PCE and prevented D2 receptor-dependent paradoxical presynaptic potentiation suggesting new therapeutic approaches for behaviors that follow PCE.
The Bamford laboratory has collaborated extensively with the Palmiter laboratory at the University of Washington on a number of projects. We showed that amphetamine sensitization requires balanced NMDA receptor activity in dopamine D1 and D2 receptor-expressing medium spiny neurons (PNAS, 2011) and that attenuating GABAA receptor signaling in dopamine neurons selectively enhances reward learning and alters risk preference in mice (Journal of Neuroscience, 2011). In another paper published in Nature Neuroscience (2012), we showed that the orphan G-protein-coupled receptor GPR88 is robustly expressed in medium spiny neurons in the striatum and regulated by neuro-pharmacological drugs. In the absence of GPR88, medium spiny neurons have increased glutamatergic excitation and reduced GABAergic inhibition that together promote enhanced firing rates in vivo, resulting in hyperactivity, poor motor-coordination, and impaired cue-based learning in mice. Targeted viral expression of GPR88 in medium spiny neurons rescues the molecular and electrophysiological properties and normalizes behavior, suggesting that aberrant medium spiny neurons activation in the absence of GPR88 underlies behavioral deficits and its dysfunction may contribute to behaviors observed in neuropsychiatric disease.
Dr. Bamford’s study published in the Journal of Neuroscience (2013) shows how acetylcholine encodes long-lasting presynaptic plasticity at glutamatergic synapses in the dorsal striatum after repeated amphetamine. Locomotion and cue-dependent behaviors are modified through corticostriatal signaling, where short-term increases in dopamine availability can provoke persistent changes in glutamate release that contribute to neuropsychiatric disorders including Parkinson’s disease and drug dependence. He showed that withdrawal of mice from repeated amphetamine treatment caused a chronic presynaptic depression (CPD) in glutamate release that was most pronounced in corticostriatal terminals with a low probability of release and lasted more than 50 days in treated mice. An amphetamine challenge reversed CPD, via a dopamine D1-receptor-dependent paradoxical presynaptic potentiation (PPP) that increased corticostriatal activity in direct pathway medium spiny neurons. This PPP correlated with locomotor responses following a drug challenge, suggesting that it may underlie the sensitization process. Experiments in slices and in vivo indicated that dopamine regulation of acetylcholine release from tonically active interneurons (TANs) contributes to CPD, PPP, locomotor sensitization, and cognitive ability. Thus, a chronic decrease in corticostriatal activity during withdrawal is regulated around a new physiological range by TANs and returns to normal upon re-exposure to amphetamine, suggesting that this paradoxical return of striatal activity to a more stable, normalized state may represent an additional source of drug motivation during abstinence.
The Bamford laboratory is currently supported by the NIH: Dopamine-Induced Striatal Synaptic Plasticity (2R01NS060803-07).
Coauthors
Research Interests
Ataxia; Chorea; Dystonia; Tourette Syndrome; Motor Skills; Movement Disorders; Neurology; Pediatrics; Tremor; Parkinsonian Disorders
Selected Publications
- A 1-Tesla MRI system for dedicated brain imaging in the neonatal intensive care unitBerson E, Mozayan A, Peterec S, Taylor S, Bamford N, Ment L, Rowe E, Lisse S, Ehrlich L, Silva C, Goodman T, Payabvash S. A 1-Tesla MRI system for dedicated brain imaging in the neonatal intensive care unit. Frontiers In Neuroscience 2023, 17: 1132173. PMCID: PMC9951115, DOI: 10.3389/fnins.2023.1132173.
- A 1-Tesla MRI system for dedicated brain imaging in the neonatal intensive care unitBerson E, Mozayan A, Peterec S, Taylor S, Bamford N, Ment L, Rowe E, Lisse S, Ehrlich L, Silva C, Goodman T, Payabvash S. A 1-Tesla MRI system for dedicated brain imaging in the neonatal intensive care unit. Frontiers In Neuroscience 2023, 17: 1132173. PMID: 36845429, PMCID: PMC9951115, DOI: 10.3389/fnins.2023.1132173.
- Neonatal Human Parechovirus Encephalitis: A Case of Rapid and Fatal GliosisDeArias A, McAllister L, Bamford N. Neonatal Human Parechovirus Encephalitis: A Case of Rapid and Fatal Gliosis. Pediatric Neurology 2022, 140: 1-2. PMID: 36577180, DOI: 10.1016/j.pediatrneurol.2022.12.001.
- Age-dependent white matter microstructural disintegrity in autism spectrum disorderWeber CF, Lake EMR, Haider SP, Mozayan A, Mukherjee P, Scheinost D, Bamford NS, Ment L, Constable T, Payabvash S. Age-dependent white matter microstructural disintegrity in autism spectrum disorder. Frontiers In Neuroscience 2022, 16: 957018. PMID: 36161157, PMCID: PMC9490315, DOI: 10.3389/fnins.2022.957018.
- AtaxiaBamford N, Cardinale K. Ataxia. 2021 DOI: 10.1891/9780826143990.0004.
- Control of exploration, motor coordination and amphetamine sensitization by cannabinoid CB1 receptors expressed in medium spiny neuronsBonm AV, Elezgarai I, Gremel CM, Viray K, Bamford NS, Palmiter RD, Grandes P, Lovinger DM, Stella N. Control of exploration, motor coordination and amphetamine sensitization by cannabinoid CB1 receptors expressed in medium spiny neurons. European Journal Of Neuroscience 2021, 54: 4934-4952. PMID: 34216157, PMCID: PMC9377695, DOI: 10.1111/ejn.15381.
- Harry T. ChuganiBamford N. Harry T. Chugani. 2021, 666-668. DOI: 10.1016/b978-0-12-821635-4.00174-0.
- Arnold P. GoldBamford N, De Vivo D. Arnold P. Gold. 2021, 742-744. DOI: 10.1016/b978-0-12-821635-4.00116-8.
- Propranolol Relieves L-Dopa-Induced Dyskinesia in Parkinsonian MiceShi Z, Bamford IJ, McKinley JW, Devi SPS, Vahedipour A, Bamford NS. Propranolol Relieves L-Dopa-Induced Dyskinesia in Parkinsonian Mice. Brain Sciences 2020, 10: 903. PMID: 33255421, PMCID: PMC7760026, DOI: 10.3390/brainsci10120903.
- The President, Past President, Executive Director, and the Board of the Child Neurology Society Denounce Racism and Inequality.Pearl PL, Mink JW, Cohen BH, Bamford N, Bass N, Jordan L, Wainwright MS, Larson R. The President, Past President, Executive Director, and the Board of the Child Neurology Society Denounce Racism and Inequality. Annals Of Neurology 2020, 88: 209-210. PMID: 32567711, DOI: 10.1002/ana.25828.
- Localising movement disorders in childhoodBamford NS, McVicar K. Localising movement disorders in childhood. The Lancet Child & Adolescent Health 2019, 3: 917-928. PMID: 31653548, PMCID: PMC7102738, DOI: 10.1016/s2352-4642(19)30330-x.
- Role of KCNQ potassium channels in stress-induced deficit of working memoryArnsten AFT, Jin LE, Gamo NJ, Ramos B, Paspalas CD, Morozov YM, Kata A, Bamford NS, Yeckel MF, Kaczmarek LK, El-Hassar L. Role of KCNQ potassium channels in stress-induced deficit of working memory. Neurobiology Of Stress 2019, 11: 100187. PMID: 31832507, PMCID: PMC6889760, DOI: 10.1016/j.ynstr.2019.100187.
- Dopamine Deficiency Reduces Striatal Cholinergic Interneuron Function in Models of Parkinson’s DiseaseMcKinley JW, Shi Z, Kawikova I, Hur M, Bamford IJ, Sudarsana Devi SP, Vahedipour A, Darvas M, Bamford NS. Dopamine Deficiency Reduces Striatal Cholinergic Interneuron Function in Models of Parkinson’s Disease. Neuron 2019, 103: 1056-1072.e6. PMID: 31324539, PMCID: PMC7102938, DOI: 10.1016/j.neuron.2019.06.013.
- Corticostriatal plasticity in the nucleus accumbens coreBamford NS, Wang W. Corticostriatal plasticity in the nucleus accumbens core. Journal Of Neuroscience Research 2019, 97: 1559-1578. PMID: 31298422, PMCID: PMC6801067, DOI: 10.1002/jnr.24494.
- Correspondence Reply to Kitaoka et al.Bamford NS. Correspondence Reply to Kitaoka et al. Pediatric Neurology 2019, 98: 95. PMID: 31113714, DOI: 10.1016/j.pediatrneurol.2019.04.006.
- Chondrodysplasia Punctata: A Clue to the Zellweger Spectrum DisordersBamford NS. Chondrodysplasia Punctata: A Clue to the Zellweger Spectrum Disorders. Pediatric Neurology 2019, 95: 84-85. PMID: 30898411, DOI: 10.1016/j.pediatrneurol.2019.01.013.
- The Striatum’s Role in Executing Rational and Irrational Economic BehaviorsBamford IJ, Bamford NS. The Striatum’s Role in Executing Rational and Irrational Economic Behaviors. The Neuroscientist 2019, 25: 475-490. PMID: 30678530, PMCID: PMC6656632, DOI: 10.1177/1073858418824256.
- In Memoriam: Arnold P. Gold (1926-2018).Bamford NS, De Vivo DC. In Memoriam: Arnold P. Gold (1926-2018). Journal Of Child Neurology 2018, 33: 746-747. PMID: 30198408, DOI: 10.1177/0883073818781186.
- In Memoriam: Arnold P. Gold (1926–2018)*Bamford N, De Vivo D. In Memoriam: Arnold P. Gold (1926–2018)*. Journal Of Child Neurology 2018, 33: 746-747. DOI: 10.1177/0883073818781186.
- Treatment of Neurological Symptoms in Wilson DiseaseVives-Rodriguez A, Robakis D, Bamford N. Treatment of Neurological Symptoms in Wilson Disease. 2018, 107-120. DOI: 10.1007/978-3-319-91527-2_6.
- Loss of glutamate signaling from the thalamus to dorsal striatum impairs motor function and slows the execution of learned behaviorsMelief EJ, McKinley JW, Lam JY, Whiteley NM, Gibson AW, Neumaier JF, Henschen CW, Palmiter RD, Bamford NS, Darvas M. Loss of glutamate signaling from the thalamus to dorsal striatum impairs motor function and slows the execution of learned behaviors. Npj Parkinson's Disease 2018, 4: 23. PMID: 30083593, PMCID: PMC6072777, DOI: 10.1038/s41531-018-0060-6.
- Pearls & Oy-stersDhakar MB, Bamford NS. Pearls & Oy-sters. Neurology 2018, 91: 47-49. PMID: 29967203, DOI: 10.1212/wnl.0000000000005745.
- Obituary: Arnold P. Gold, MD.Bamford NS, De Vivo DC. Obituary: Arnold P. Gold, MD. Pediatric Neurology 2018, 82: 5-6. PMID: 29776462, DOI: 10.1016/j.pediatrneurol.2018.02.006.
- Obituary: Arnold P. Gold, MDBamford N, De Vivo D. Obituary: Arnold P. Gold, MD. Pediatric Neurology 2018, 82: 5-6. DOI: 10.1016/j.pediatrneurol.2018.02.006.
- Dopamine’s Effects on Corticostriatal Synapses during Reward-Based BehaviorsBamford NS, Wightman RM, Sulzer D. Dopamine’s Effects on Corticostriatal Synapses during Reward-Based Behaviors. Neuron 2018, 97: 494-510. PMID: 29420932, PMCID: PMC5808590, DOI: 10.1016/j.neuron.2018.01.006.
- Nicotine Modifies Corticostriatal Plasticity and Amphetamine Rewarding Behaviors in MiceStorey GP, Gonzalez-Fernandez G, Bamford IJ, Hur M, McKinley JW, Heimbigner L, Minasyan A, Walwyn WM, Bamford NS. Nicotine Modifies Corticostriatal Plasticity and Amphetamine Rewarding Behaviors in Mice. ENeuro 2016, 3: eneuro.0095-15.2015. PMID: 26866057, PMCID: PMC4745180, DOI: 10.1523/eneuro.0095-15.2015.
- Dopamine-dependent corticostriatal synaptic filtering regulates sensorimotor behaviorWong MY, Borgkvist A, Choi SJ, Mosharov EV, Bamford NS, Sulzer D. Dopamine-dependent corticostriatal synaptic filtering regulates sensorimotor behavior. Neuroscience 2015, 290: 594-607. PMID: 25637802, PMCID: PMC4494866, DOI: 10.1016/j.neuroscience.2015.01.022.
- Acetylcholine Encodes Long-Lasting Presynaptic Plasticity at Glutamatergic Synapses in the Dorsal Striatum after Repeated Amphetamine ExposureWang W, Darvas M, Storey GP, Bamford IJ, Gibbs JT, Palmiter RD, Bamford NS. Acetylcholine Encodes Long-Lasting Presynaptic Plasticity at Glutamatergic Synapses in the Dorsal Striatum after Repeated Amphetamine Exposure. Journal Of Neuroscience 2013, 33: 10405-10426. PMID: 23785153, PMCID: PMC3685836, DOI: 10.1523/jneurosci.0014-13.2013.
- Overinhibition of corticostriatal activity following prenatal cocaine exposureWang W, Nitulescu I, Lewis JS, Lemos JC, Bamford IJ, Posielski NM, Storey GP, Phillips PE, Bamford NS. Overinhibition of corticostriatal activity following prenatal cocaine exposure. Annals Of Neurology 2012, 73: 355-369. PMID: 23225132, PMCID: PMC3766752, DOI: 10.1002/ana.23805.
- Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviorsQuintana A, Sanz E, Wang W, Storey GP, Güler AD, Wanat MJ, Roller BA, La Torre A, Amieux PS, McKnight GS, Bamford NS, Palmiter RD. Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors. Nature Neuroscience 2012, 15: 1547-1555. PMID: 23064379, PMCID: PMC3483418, DOI: 10.1038/nn.3239.
- Regulation of prefrontal excitatory neurotransmission by dopamine in the nucleus accumbens coreWang W, Dever D, Lowe J, Storey GP, Bhansali A, Eck EK, Nitulescu I, Weimer J, Bamford NS. Regulation of prefrontal excitatory neurotransmission by dopamine in the nucleus accumbens core. The Journal Of Physiology 2012, 590: 3743-3769. PMID: 22586226, PMCID: PMC3476631, DOI: 10.1113/jphysiol.2012.235200.
- Attenuating GABAA Receptor Signaling in Dopamine Neurons Selectively Enhances Reward Learning and Alters Risk Preference in MiceParker JG, Wanat MJ, Soden ME, Ahmad K, Zweifel LS, Bamford NS, Palmiter RD. Attenuating GABAA Receptor Signaling in Dopamine Neurons Selectively Enhances Reward Learning and Alters Risk Preference in Mice. Journal Of Neuroscience 2011, 31: 17103-17112. PMID: 22114279, PMCID: PMC3235504, DOI: 10.1523/jneurosci.1715-11.2011.
- Imaging Presynaptic Exocytosis in Corticostriatal SlicesWong MY, Sulzer D, Bamford NS. Imaging Presynaptic Exocytosis in Corticostriatal Slices. 2011, 793: 363-376. PMID: 21913113, PMCID: PMC6486818, DOI: 10.1007/978-1-61779-328-8_24.
- Balanced NMDA receptor activity in dopamine D1 receptor (D1R)- and D2R-expressing medium spiny neurons is required for amphetamine sensitizationBeutler LR, Wanat MJ, Quintana A, Sanz E, Bamford NS, Zweifel LS, Palmiter RD. Balanced NMDA receptor activity in dopamine D1 receptor (D1R)- and D2R-expressing medium spiny neurons is required for amphetamine sensitization. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 4206-4211. PMID: 21368124, PMCID: PMC3054029, DOI: 10.1073/pnas.1101424108.
- Chapter 35 Alterations in Corticostriatal Synaptic Function in Huntington's and Parkinson's DiseasesCepeda C, Bamford N, André V, Levine M. Chapter 35 Alterations in Corticostriatal Synaptic Function in Huntington's and Parkinson's Diseases. 2010, 20: 607-623. DOI: 10.1016/b978-0-12-374767-9.00035-4.
- Neuromuscular hip dysplasia in Charcot–Marie–Tooth disease type 1ABAMFORD NS, WHITE KK, ROBINETT SA, OTTO RK, GOSPE SM. Neuromuscular hip dysplasia in Charcot–Marie–Tooth disease type 1A. Developmental Medicine & Child Neurology 2009, 51: 408-411. PMID: 19388151, DOI: 10.1111/j.1469-8749.2008.03234.x.
- Age-Dependent Alterations of Corticostriatal Activity in the YAC128 Mouse Model of Huntington DiseaseJoshi PR, Wu NP, André VM, Cummings DM, Cepeda C, Joyce JA, Carroll JB, Leavitt BR, Hayden MR, Levine MS, Bamford NS. Age-Dependent Alterations of Corticostriatal Activity in the YAC128 Mouse Model of Huntington Disease. Journal Of Neuroscience 2009, 29: 2414-2427. PMID: 19244517, PMCID: PMC2670193, DOI: 10.1523/jneurosci.5687-08.2009.
- The Corticostriatal Pathway in Parkinson’s DiseaseBamford N, Cepeda C. The Corticostriatal Pathway in Parkinson’s Disease. 2008, 87-104. DOI: 10.1007/978-1-60327-252-0_6.
- Repeated Exposure to Methamphetamine Causes Long-Lasting Presynaptic Corticostriatal Depression that Is Renormalized with Drug ReadministrationBamford NS, Zhang H, Joyce JA, Scarlis CA, Hanan W, Wu NP, André VM, Cohen R, Cepeda C, Levine MS, Harleton E, Sulzer D. Repeated Exposure to Methamphetamine Causes Long-Lasting Presynaptic Corticostriatal Depression that Is Renormalized with Drug Readministration. Neuron 2008, 58: 89-103. PMID: 18400166, PMCID: PMC2394729, DOI: 10.1016/j.neuron.2008.01.033.
- 362 ROLE OF ACETYLCHOLINE IN PSYCHOSTIMULANT ADDICTION.Kumar T, Joyce J, Bamford N. 362 ROLE OF ACETYLCHOLINE IN PSYCHOSTIMULANT ADDICTION. Journal Of Investigative Medicine 2006, 54: s142. DOI: 10.2310/6650.2005.x0004.361.
- Dopamine Modulates Release from Corticostriatal TerminalsBamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK. Dopamine Modulates Release from Corticostriatal Terminals. Journal Of Neuroscience 2004, 24: 9541-9552. PMID: 15509741, PMCID: PMC6730145, DOI: 10.1523/jneurosci.2891-04.2004.
- Heterosynaptic Dopamine Neurotransmission Selects Sets of Corticostriatal TerminalsBamford NS, Zhang H, Schmitz Y, Wu NP, Cepeda C, Levine MS, Schmauss C, Zakharenko SS, Zablow L, Sulzer D. Heterosynaptic Dopamine Neurotransmission Selects Sets of Corticostriatal Terminals. Neuron 2004, 42: 653-663. PMID: 15157425, DOI: 10.1016/s0896-6273(04)00265-x.
- Congenital Guillain–Barré syndrome associated with maternal inflammatory bowel disease is responsive to intravenous immunoglobulinBamford NS, Trojaborg W, Sherbany AA, de Vivo DC. Congenital Guillain–Barré syndrome associated with maternal inflammatory bowel disease is responsive to intravenous immunoglobulin. European Journal Of Paediatric Neurology 2002, 6: 115-119. PMID: 11995958, DOI: 10.1053/ejpn.2002.0557.
- Varicella-zoster Virus Retrobulbar Optic Neuritis in a Patient With Human Immunodeficiency VirusShayegani A, Odel J, Kazim M, Hall L, Bamford N, Schubert H. Varicella-zoster Virus Retrobulbar Optic Neuritis in a Patient With Human Immunodeficiency Virus. American Journal Of Ophthalmology 1996, 122: 586-588. PMID: 8862063, DOI: 10.1016/s0002-9394(14)72127-0.
Clinical Trials
Conditions | Study Title |
---|---|
Child Development & Autism; Diseases of the Nervous System; Genetics - Adult; Genetics - Pediatric; Mental Health & Behavioral Research | Genetic and molecular studies of developmental neuropsychiatric disorders |
Diseases of the Digestive System - Liver; Diseases of the Eye; Diseases of the Nervous System | Wilson Disease Registry |