Skip to Main Content

James Jeanne, PhD

Assistant Professor in Neuroscience; Assistant Professor, Neuroscience

Contact Information

James Jeanne, PhD

Research Summary

To appropriately interact with the external world, we must continuously evaluate incoming sensory information, integrate it with previously acquired information, and choose appropriate behavioral responses. How does the brain coordinate these goals? The operation of single neurons and small circuits can be explained by a range of cellular and biophysical mechanisms. “Higher-order” neural functions—such as sensory perception, memory, and decision making—can be characterized with increasingly sophisticated algorithmic descriptions. Yet a gap in our understanding still exists between these mechanisms and algorithms.

The long-term goal of the Jeanne Lab is to close this gap by understanding neural computation. Our mission is therefore

  • to elucidate the biophysical, cellular, and circuit principles that govern neural computation
  • to understand how neural computation gives rise to higher-order neural functions and behavior

Our approach is to study neural computation in the fruit fly. We use the fly because their small brains are simpler to understand, yet nonetheless capable of performing a suite of higher-order functions. We use a wide range of techniques, but have a strong emphasis on in vivo whole-cell patch clamp electrophysiology, 2-photon imaging, optogenetics, and behavior.

Research Interests

Behavior; Drosophila melanogaster; Electrophysiology; Insecta; Neurons; Synapses

Research Image

Selected Publications