Andre Levchenko
John C. Malone Professor of Biomedical EngineeringDownloadHi-Res Photo
Cards
Appointments
Neurosurgery
Secondary
About
Titles
John C. Malone Professor of Biomedical Engineering
Appointments
Neurosurgery
ProfessorSecondary
Other Departments & Organizations
- Cancer Signaling Networks
- Center for Biomedical Data Science
- Immunology
- Neurosurgery
- Program in Neurodevelopment and Regeneration
- Yale Biomedical Imaging Institute
- Yale Cancer Center
- Yale Combined Program in the Biological and Biomedical Sciences (BBS)
- Yale CTAP
- Yale Fibrosis Program
- YCCEH
Research
Overview
Medical Research Interests
Cell Communication; Microfluidics; Signal Transduction; Systems Biology
ORCID
0000-0001-6262-1222
Research at a Glance
Yale Co-Authors
Frequent collaborators of Andre Levchenko's published research.
Publications Timeline
A big-picture view of Andre Levchenko's research output by year.
Research Interests
Research topics Andre Levchenko is interested in exploring.
Michael Murrell
Jesse Rinehart, PhD
Alexandre Jourdon, PhD
Alexej Abyzov, PhD
Flora Vaccarino, MD
Jessica Mariani, PhD
55Publications
4,277Citations
Signal Transduction
Cell Communication
Systems Biology
Publications
2025
Dynamic decoding of VEGF signaling and coordinated control of multiple phenotypes by the Src-TEM4-YAP pathway
Lee S, Kang T, Shang X, Levchenko A. Dynamic decoding of VEGF signaling and coordinated control of multiple phenotypes by the Src-TEM4-YAP pathway. Cell Systems 2025, 101321. PMID: 40541183, DOI: 10.1016/j.cels.2025.101321.Peer-Reviewed Original ResearchAltmetricConceptsSequential activation of SrcPaper's transparent peer review processTransparent peer review processActivation of SrcPathway levelMultiple phenotypesPhenotypic outcomesRearrangement of cellsPathway componentsPathway organizationNotch signalingPhysiological processesCell contactSequential activationPathwayVascular endothelial growth factor signalingSignal inputVascular endothelial growth factorDiverse time scalesDynamic decoderCoordinated controlVEGF signalingGrowth factorSignalElevated levelsYAP controls cell migration and invasion through a Rho GTPase switch
Shah S, Ren C, Tippens N, Park J, Mohyeldin A, Wang S, Vela G, Martinez-Gutierrez J, Margolis S, Schmidt S, Quiñones-Hinojosa A, Levchenko A. YAP controls cell migration and invasion through a Rho GTPase switch. Science Signaling 2025, 18: eadu3794. PMID: 40424361, DOI: 10.1126/scisignal.adu3794.Peer-Reviewed Original ResearchAltmetricMeSH Keywords and ConceptsMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsBrain NeoplasmsCell Line, TumorCell MovementFemaleGlioblastomaGuanine Nucleotide Exchange FactorsHumansMiceNeoplasm InvasivenessPhosphoproteinsProtein Serine-Threonine Kinasesrac1 GTP-Binding ProteinrhoA GTP-Binding ProteinSignal TransductionSTAT3 Transcription FactorTranscription FactorsYAP-Signaling ProteinsConceptsCell migrationGuanine nucleotide exchange factor TrioRegulation of cytoskeletal dynamicsRho family guanosine triphosphatasesInvasive cell spreadTranscriptional coactivator YAPActivation of Rac1Inhibition of RhoAHyperactivation of YAPHuman breast epithelial cellsIncreased cell migrationBreast epithelial cellsGTPase switchAssociated with cancer metastasisMovement of cellsCytoskeletal dynamicsGuanosine triphosphataseSignaling networksInvasion in vitroIntronic enhancerTranscription factorsCell spreadingRac1Invasive behaviorPathological contextsSpecification of human brain regions with orthogonal gradients of WNT and SHH in organoids reveals patterning variations across cell lines
Scuderi S, Kang T, Jourdon A, Nelson A, Yang L, Wu F, Anderson G, Mariani J, Tomasini L, Sarangi V, Abyzov A, Levchenko A, Vaccarino F. Specification of human brain regions with orthogonal gradients of WNT and SHH in organoids reveals patterning variations across cell lines. Cell Stem Cell 2025, 32: 970-989.e11. PMID: 40315847, PMCID: PMC12145255, DOI: 10.1016/j.stem.2025.04.006.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsGradient of WntGene expression programsSingle-cell transcriptomicsBrain lineagesMorphogen gradientsEpigenetic variationDorso-ventral axisShh signalingExpression programsMorphogenFetal human brainHuman iPSC linesPluripotent stem cellsCell linesNeuronal lineageNeural tubeShhWntLineagesLine-to-line variationEarly patterningPattern systemPattern variationHuman brain regionsIPSC linesCas12a-knock-in mice for multiplexed genome editing, disease modelling and immune-cell engineering
Tang K, Zhou L, Tian X, Fang S, Vandenbulcke E, Du A, Shen J, Cao H, Zhou J, Chen K, Kim H, Luo Z, Xin S, Lin S, Park D, Yang L, Zhang Y, Suzuki K, Majety M, Ling X, Lam S, Chow R, Ren P, Tao B, Li K, Codina A, Dai X, Shang X, Bai S, Nottoli T, Levchenko A, Booth C, Liu C, Fan R, Dong M, Zhou X, Chen S. Cas12a-knock-in mice for multiplexed genome editing, disease modelling and immune-cell engineering. Nature Biomedical Engineering 2025, 1-19. PMID: 40114032, DOI: 10.1038/s41551-025-01371-2.Peer-Reviewed Original ResearchCitationsAltmetricConceptsKnock-in miceBone marrow-derived dendritic cellsCD8+ T cellsNon-viral delivery vehiclesAdeno-associated virusDisease modelsCD4+Dendritic cellsC57BL/6 backgroundT cellsConstitutive expressionB cellsLipid nanoparticlesEx vivoGenome editingMiceMultiplex genome engineeringROSA26 locusGene interaction networksMultiplex genome editingLiver tissueTargeted genome editingDiseaseDelivery vehiclesCRISPR RNA
2024
Spatial–temporal order–disorder transition in angiogenic NOTCH signaling controls cell fate specification
Kang T, Bocci F, Nie Q, Onuchic J, Levchenko A. Spatial–temporal order–disorder transition in angiogenic NOTCH signaling controls cell fate specification. ELife 2024, 12 DOI: 10.7554/elife.89262.3.Peer-Reviewed Original ResearchCitationsConceptsCell fate specificationStalk cellsCell type-specificTip cellsNotch signalingFate specificationStalk cell differentiationMorphogenic processesDensity of fibronectinType-specificCell typesCell-cell communicationComplex morphogenic processesResponse to elevated levelsCell fateCell identityDynamics of spatial patternsDepletion of fibronectinEnvironmental cuesSignaling moleculesBlood vessel sproutingSprout extensionAngiogenic morphogenesisSignaling pathwayHypoxic micro-environmentSpatial–temporal order–disorder transition in angiogenic NOTCH signaling controls cell fate specification
Kang T, Bocci F, Nie Q, Onuchic J, Levchenko A. Spatial–temporal order–disorder transition in angiogenic NOTCH signaling controls cell fate specification. ELife 2024, 12: rp89262. PMID: 38376371, PMCID: PMC10942579, DOI: 10.7554/elife.89262.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsConceptsCell fate specificationFate specificationNotch signalingMorphogenic processesCell-cell communicationComplex morphogenic processesCell fateDynamics of spatial patternsDepletion of fibronectinTip cellsSprout extensionAngiogenic morphogenesisHypoxic micro-environmentCell plasticityCellsComputational analysisPre-existing onesCell patternMicro-environmentSpatial patternsLocal enrichmentMorphogenesisEndothelial cellsAngiogenesis modelFibronectin
2023
Single-Cell Measurements and Modeling and Computation of Decision-Making Errors in a Molecular Signaling System with Two Output Molecules
Emadi A, Lipniacki T, Levchenko A, Abdi A. Single-Cell Measurements and Modeling and Computation of Decision-Making Errors in a Molecular Signaling System with Two Output Molecules. Biology 2023, 12: 1461. PMID: 38132287, PMCID: PMC10740708, DOI: 10.3390/biology12121461.Peer-Reviewed Original ResearchCitationsSPAK-dependent cotransporter activity mediates capillary adhesion and pressure during glioblastoma migration in confined spaces.
Lee S, Yousafzai M, Mohler K, Yadav V, Amiri S, Szuszkiewicz J, Levchenko A, Rinehart J, Murrell M. SPAK-dependent cotransporter activity mediates capillary adhesion and pressure during glioblastoma migration in confined spaces. Molecular Biology Of The Cell 2023, 34: ar122. PMID: 37672340, PMCID: PMC10846615, DOI: 10.1091/mbc.e23-03-0103.Peer-Reviewed Original ResearchCitationsAltmetric
2022
Lactate-dependent chaperone-mediated autophagy induces oscillatory HIF-1α activity promoting proliferation of hypoxic cells
Kshitiz, Afzal J, Suhail Y, Chang H, Hubbi M, Hamidzadeh A, Goyal R, Liu Y, Sun P, Nicoli S, Dang C, Levchenko A. Lactate-dependent chaperone-mediated autophagy induces oscillatory HIF-1α activity promoting proliferation of hypoxic cells. Cell Systems 2022, 13: 1048-1064.e7. PMID: 36462504, PMCID: PMC10012408, DOI: 10.1016/j.cels.2022.11.003.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsHIF-1α activityActivation of genesChaperone-mediated autophagyCancer cellsCell divisionIndividual cancer cellsRegulated processPatient-derived cancer cellsSubset of cellsMolecular mechanismsFluorescent reportersSingle-cell responsesCancer cell linesCell linesGenesHypoxic tumor cellsHIF-1αHypoxic conditionsCellsBroad suppressionAggressive growthTumor cellsHypoxic cellsOscillatory activityExtracellular lactate
2020
CSIG-08. TARGETING ION TRANSPORT-REGULATORY KINASES AS A NOVEL TREATMENT FOR GLIOBLASTOMA
Schiapparelli P, Meade P, Miranda-Herrera P, Bechtle A, Issacs F, Levchenko A, Rinehart J, Quinones-Hinojosa A. CSIG-08. TARGETING ION TRANSPORT-REGULATORY KINASES AS A NOVEL TREATMENT FOR GLIOBLASTOMA. Neuro-Oncology 2020, 22: ii29-ii29. PMCID: PMC7650317, DOI: 10.1093/neuonc/noaa215.120.Peer-Reviewed Original ResearchConceptsOxidative stress-responsive kinase 1Small molecule inhibitorsGBM cellsMolecule inhibitorsAggressive primary brain tumorCell migrationComplete surgical resectionMaximal safe resectionPrimary brain tumorsAdjacent brain parenchymaCell proliferationOrthotopic murine modelPatient-derived GBM cell linesDose-dependent reductionImportant therapeutic componentGBM cell linesCell cycle analysisGBM cell migrationSurgical resectionSafe resectionBrain parenchymaCell infiltrationCell cycle arrestMurine modelRadiation therapy
News & Links
News
- May 01, 2025Source: Yale News
How Molecular Traffic Cops Guide Development of the Human Brain
- July 27, 2023
Yale Scientists Develop a New Approach to Strengthen CAR-T Cell Therapy for Cancer Treatment
- April 04, 2023Source: Yale Daily News
Researchers explore the role of cellular plasticity in cancer
- February 23, 2023Source: Big Think
Cancer evolution is mathematical
Related Links
Get In Touch
Events
Jul 20259Today
Yale Only John S. Tsang, PhD, MMath - Evan Paull - Roham Parsa - Tim Olsen - Sjouke van der Stegan - Peter Sims - Andre Levchenko - Andres Hidalgo, PhD - Jennifer M. Kwan, MD, PhD - Steven Kleinstein, PhD - Gur Yaari - Sidi Chen, PhD - Etienne Caron, PhD - Ya-Chi Ho, MD, PhD - Carrie L Lucas, PhD - Lauren Hachmann Sansing, MD, MS, FAHA, FANA - Andrew James Martins, PhD - Mark N. Lee, MD, PhD