Avinash Kumar, PhD
Postdoctoral Associate in Cell BiologyAbout
Research
Publications
2024
Tomosyns attenuate SNARE assembly and synaptic depression by binding to VAMP2-containing template complexes
Meijer M, Öttl M, Yang J, Subkhangulova A, Kumar A, Feng Z, van Voorst T, Groffen A, van Weering J, Zhang Y, Verhage M. Tomosyns attenuate SNARE assembly and synaptic depression by binding to VAMP2-containing template complexes. Nature Communications 2024, 15: 2652. PMID: 38531902, PMCID: PMC10965968, DOI: 10.1038/s41467-024-46828-1.Peer-Reviewed Original ResearchConceptsSynaptobrevin-2/VAMP2SNARE assemblySNARE motifC-terminal polybasic regionSNAP-25 bindingSNARE complex assemblyTemplate complexStructure-function analysisMunc18-1Syntaxin-1Polybasic regionTomosynSNAP-25Membrane fusionSynaptic vesiclesSingle-molecule force measurementsEssential intermediateSNAREMotifInhibitory functionAssemblyMouse modelMunc18Synaptic transmissionSynaptic strength
2023
Nonlinear compliance of NOMPC gating spring and its implication in mechanotransduction
Wang Y, Jin P, Kumar A, Bulkley D, Jan L, Cheng Y, Jan Y, Zhang Y. Nonlinear compliance of NOMPC gating spring and its implication in mechanotransduction. Biophysical Journal 2023, 122: 162a. DOI: 10.1016/j.bpj.2022.11.1030.Peer-Reviewed Original Research
2022
Anomalous heating in a colloidal system
Kumar A, Chétrite R, Bechhoefer J. Anomalous heating in a colloidal system. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2118484119. PMID: 35078935, PMCID: PMC8812517, DOI: 10.1073/pnas.2118484119.Peer-Reviewed Original ResearchQuantitative Models of Lipid Transfer and Membrane Contact Formation
Zhang Y, Ge J, Bian X, Kumar A. Quantitative Models of Lipid Transfer and Membrane Contact Formation. Contact 2022, 5: 25152564221096024. PMID: 36120532, PMCID: PMC9481209, DOI: 10.1177/25152564221096024.Peer-Reviewed Original ResearchMembrane contact sitesLipid transfer proteinLipid transferMembrane tensionMCS formationLipid exchange mechanismsMembrane contact formationOrganelle biogenesisExtended synaptotagminsOrganelle dynamicsMembrane proteinsDifferent organellesMembrane bindingMembrane expansionContact sitesMolecular mechanismsLipid flowLipid homeostasisTransfer proteinSimple lipidsProteinMembraneDistinct compositionLipidsKey role
2021
Single-molecule manipulation of macromolecules on GUV or SUV membranes using optical tweezers
Wang Y, Kumar A, Jin H, Zhang Y. Single-molecule manipulation of macromolecules on GUV or SUV membranes using optical tweezers. Biophysical Journal 2021, 120: 5454-5465. PMID: 34813728, PMCID: PMC8715244, DOI: 10.1016/j.bpj.2021.11.2884.Peer-Reviewed Original ResearchConceptsOptical tweezersOptical trappingSingle-molecule manipulation studiesMembrane protein dynamicsMembrane proteinsSingle-molecule manipulationMembrane tensionTweezersHigh membrane tensionProtein conformational changesModel membranesMembrane bindingProtein dynamicsC2AB domainConformational changesManipulation studiesSUV membranesReversible foldingSmall unilamellar vesiclesGUVsTrappingDNA hairpinsUnilamellar vesiclesProteinMembraneA fresh understanding of the Mpemba effect
Bechhoefer J, Kumar A, Chétrite R. A fresh understanding of the Mpemba effect. Nature Reviews Physics 2021, 3: 534-535. DOI: 10.1038/s42254-021-00349-8.Peer-Reviewed Original ResearchThe Metastable Mpemba Effect Corresponds to a Non-monotonic Temperature Dependence of Extractable Work
Chétrite R, Kumar A, Bechhoefer J. The Metastable Mpemba Effect Corresponds to a Non-monotonic Temperature Dependence of Extractable Work. Frontiers In Physics 2021, 9: 654271. DOI: 10.3389/fphy.2021.654271.Peer-Reviewed Original Research
2020
Exponentially faster cooling in a colloidal system
Kumar A, Bechhoefer J. Exponentially faster cooling in a colloidal system. Nature 2020, 584: 64-68. PMID: 32760048, DOI: 10.1038/s41586-020-2560-x.Peer-Reviewed Original Research
2018
Nanoscale virtual potentials using optical tweezers
Kumar A, Bechhoefer J. Nanoscale virtual potentials using optical tweezers. Applied Physics Letters 2018, 113: 183702. DOI: 10.1063/1.5055580.Peer-Reviewed Original ResearchDouble-well potentialOptical tweezersOptical tweezers techniqueSpatial light modulatorAdjustable barrier heightOptical trapVirtual potentialFeedback trapLight modulatorTrap centersHarmonic potentialIsotropic trapDual beamBarrier heightParticle positionsArbitrary potentialTweezersColloidal particlesLength scalesTrapsWell separationParticlesBeamModulatorPotentialOptical feedback tweezers
Kumar A, Bechhoefer J. Optical feedback tweezers. 2018, 10723: 107232j. DOI: 10.1117/12.2323837.Peer-Reviewed Original ResearchFeedback trapOptical trapAcoustooptic deflectorTime-shared optical tweezersDouble-well potentialVirtual potentialOptical tweezersLaser powerPosition detectorTrap positionBarrier heightParticle positionsArbitrary potentialTweezersObserved fluctuationsTrapsParticlesWell separationIndependent controlDeflectorLoop rateDetectorPreliminary experimentsHydrodynamic forcesFeedback force