2018
Melanopsin Shows Its (Contrast-)Sensitive Side
Pottackal J, Demb JB. Melanopsin Shows Its (Contrast-)Sensitive Side. Neuron 2018, 99: 630-632. PMID: 30138585, DOI: 10.1016/j.neuron.2018.08.007.Peer-Reviewed Original Research
2013
SAD and the Not-So-Single Photoreceptors
Oren DA, Koziorowski M, Desan PH. SAD and the Not-So-Single Photoreceptors. American Journal Of Psychiatry 2013, 170: 1403-1412. PMID: 23929223, DOI: 10.1176/appi.ajp.2013.13010111.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsHumansLightLight Signal TransductionNeuronsPhotoreceptor Cells, VertebrateRod OpsinsSeasonal Affective DisorderSignal TransductionConceptsMolecular mechanismsSeasonal affective disorderCircannual regulationCritical regulatorTetrapyrrole pigmentsDevelopment of therapiesRole of rodsInfluence of lightPhotoreceptorsCone photoreceptorsLight treatmentAntidepressant effectsPhysiologyAnimal modelsAffective disordersRecent studiesSingle photoreceptorsPhototransductionRegulatorDisordersRegulationMechanismGasotransmitterRolePigments
2010
Molecular basis of infrared detection by snakes
Gracheva EO, Ingolia NT, Kelly YM, Cordero-Morales JF, Hollopeter G, Chesler AT, Sánchez EE, Perez JC, Weissman JS, Julius D. Molecular basis of infrared detection by snakes. Nature 2010, 464: 1006-1011. PMID: 20228791, PMCID: PMC2855400, DOI: 10.1038/nature08943.Peer-Reviewed Original ResearchConceptsTranscriptional profiling approachVertebrate nervous systemTransient receptor potential channelsPit organsMolecular basisEvolutionary tuningUnique sensory systemPhotochemical transductionIon channelsProfiling approachSnakesPotential channelsNerve fibersPrimary transducerSensory systemsPredatorsOrgansPreySensory nerve fibersTransductionTRPA1 channelsNervous systemTransducesThermosensorsInfrared receptors
2008
Melanopsin Ganglion Cells Use a Membrane-Associated Rhabdomeric Phototransduction Cascade
Graham DM, Wong KY, Shapiro P, Frederick C, Pattabiraman K, Berson DM. Melanopsin Ganglion Cells Use a Membrane-Associated Rhabdomeric Phototransduction Cascade. Journal Of Neurophysiology 2008, 99: 2522-2532. PMID: 18305089, DOI: 10.1152/jn.01066.2007.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiosensing TechniquesCalciumCell LineCell MembraneDiglyceridesEgtazic AcidElectrophysiologyEnzyme InhibitorsFluorescent Antibody TechniqueGTP-Binding ProteinsHeparinIn Vitro TechniquesInositol 1,4,5-Trisphosphate ReceptorsLight Signal TransductionMalePatch-Clamp TechniquesPC12 CellsPhotic StimulationProtein Kinase CRatsRats, Sprague-DawleyRetinal Ganglion CellsReverse Transcriptase Polymerase Chain ReactionRod OpsinsThapsigarginConceptsRhabdomeric photoreceptorsCommon evolutionary originEvolutionary originPlasma membraneInvertebrate eyesG proteinsPhototransduction cascadePhototransduction mechanismPhospholipase C.Single-cell RT-PCRMammalian eyePhotoreceptorsCascadeRT-PCRCircadian rhythmCellsStriking similarityMembranePatch-clamp recordingsPhototransductionOpsinProteinPhotopigmentsMelanopsinGanglion cells
2004
The bovine iris–ciliary epithelium expresses components of rod phototransduction
Ghosh S, Salvador-Silva M, Coca-Prados M. The bovine iris–ciliary epithelium expresses components of rod phototransduction. Neuroscience Letters 2004, 370: 7-12. PMID: 15489008, DOI: 10.1016/j.neulet.2004.07.026.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornArrestinBlotting, NorthernBlotting, WesternCattleCiliary BodyEpitheliumEye ProteinsGene ExpressionG-Protein-Coupled Receptor Kinase 1IrisLight Signal TransductionNeuronsPromoter Regions, GeneticProtein KinasesRetinal Rod Photoreceptor CellsReverse Transcriptase Polymerase Chain ReactionRhodopsinRNA, MessengerTransfectionConceptsCiliary epitheliumIris cellsBasal activityCommon embryonic originOcular ciliary epitheliumNeural retinaWestern blotRT-PCR amplificationRetinaEpitheliumSignificant stimulationBovine irisEmbryonic originStimulationBlotRod phototransductionTransient transfectionNorthern blotRhodopsin kinasePromoter activityDistal promoter elementLow levelsIrisReporter constructsLower vertebrates
2001
Molecular Evidence That Human Ocular Ciliary Epithelium Expresses Components Involved in Phototransduction
Bertazolli-Filho R, Ghosh S, Huang W, Wollmann G, Coca-Prados M. Molecular Evidence That Human Ocular Ciliary Epithelium Expresses Components Involved in Phototransduction. Biochemical And Biophysical Research Communications 2001, 284: 317-325. PMID: 11394879, DOI: 10.1006/bbrc.2001.4970.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, MonoclonalArrestinBlotting, WesternCalcium-Binding ProteinsCattleCell LineCiliary BodyCyclic Nucleotide-Gated Cation ChannelsEpithelial CellsEye ProteinsFluorescent Antibody Technique, IndirectG-Protein-Coupled Receptor Kinase 1HippocalcinHumansImmunoblottingImmunohistochemistryIon ChannelsLight Signal TransductionLipoproteinsNerve Tissue ProteinsPhosphoric Diester HydrolasesProtein KinasesProtein SubunitsRecoverinRetinaReverse Transcriptase Polymerase Chain ReactionRhodopsinRNA, MessengerSequence Analysis, DNATransducinConceptsHuman ocular ciliary epitheliumCiliary epitheliumOcular ciliary epitheliumNPE cellsCiliary epithelial cell linePars plicata regionIntact ciliary epitheliumWestern blot analysisCultured NPE cellsEpithelial cell lineExpression of rhodopsinIndirect immunofluorescenceVisual arrestinHuman retinaMonoclonal antibodiesHuman ciliary epitheliumThree- to fourfoldEpitheliumRT-PCRPhotoreceptor cellsRhodopsin mRNABlot analysisCell linesRetinaRhodopsin kinase
1998
Heisenberg meets photobiology?
Oren D. Heisenberg meets photobiology? Science 1998, 279: 969. PMID: 9490481, DOI: 10.1126/science.279.5353.963h.Peer-Reviewed Original ResearchTweaking the human circadian clock with light.
Oren D, Terman M. Tweaking the human circadian clock with light. Science 1998, 279: 333-4. PMID: 9454328, DOI: 10.1126/science.279.5349.333.Peer-Reviewed Original Research
1997
Bilirubin, Rem Sleep, and Phototransduction of Environmental Time Cues. A Hypothesis
Oren D. Bilirubin, Rem Sleep, and Phototransduction of Environmental Time Cues. A Hypothesis. Chronobiology International 1997, 14: 319-329. PMID: 9167892, DOI: 10.3109/07420529709001423.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBilirubinBiological ClocksBiological EvolutionDepressionHumansLightLight Signal TransductionModels, BiologicalPlantsSleep, REMConceptsBiological clockEndogenous biological clockPlant phytochromesEvolutionary roleBiological clock systemEnvironmental time cuesDifferent speciesZeitgeber signalsClock systemVisual pigmentsHeme moietyCommon molecular structurePrimary effectPhototransductionBiological rhythmsPlantsPrevailing hypothesisPigmentsSimilar chromophoresTime cuesClockAnimalsPhytochromeSpeciesBile pigments
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply