2023
Microbiota in disease-transmitting vectors
Wang J, Gao L, Aksoy S. Microbiota in disease-transmitting vectors. Nature Reviews Microbiology 2023, 21: 604-618. PMID: 37217793, PMCID: PMC12397960, DOI: 10.1038/s41579-023-00901-6.Peer-Reviewed Original ResearchConceptsSymbiotic associationVector-borne diseasesDisease-transmitting vectorsAlternative control methodsVector competenceUnique key featuresHealth of humansSymbiotic microorganismsVector taxaReproductive strategiesArthropod hostsLife historyVector arthropodsHaematophagous arthropodsTriatomine bugsBlood feedVector populationsTransmission successArthropodsFeeding behaviorCurrent knowledgeMicrobiotaPathogensKnowledge gapsTaxa
2022
Metabolic interactions between disease-transmitting vectors and their microbiota
Song X, Zhong Z, Gao L, Weiss BL, Wang J. Metabolic interactions between disease-transmitting vectors and their microbiota. Trends In Parasitology 2022, 38: 697-708. PMID: 35643853, DOI: 10.1016/j.pt.2022.05.002.Peer-Reviewed Original ResearchConceptsDisease-transmitting vectorsSymbiotic microbesPathogen defenseHost biologyHematophagous arthropodsBacterial metabolic activitySand fliesArthropod vectorsImportant vectorAnimals/humansMetabolic interactionsEndogenous microbiotaTsetse fliesFliesRecent discoveryVector-borne diseasesBiologyMetabolic activityMosquitoesMicrobiotaDifferent arthropod vectorsArthropodsMicrobesOrganismsTicks
2021
The Lyme Disease agent co-opts adiponectin receptor-mediated signaling in its arthropod vector
Tang X, Cao Y, Arora G, Hwang J, Sajid A, Brown CL, Mehta S, Marín-López A, Chuang YM, Wu MJ, Ma H, Pal U, Narasimhan S, Fikrig E. The Lyme Disease agent co-opts adiponectin receptor-mediated signaling in its arthropod vector. ELife 2021, 10: e72568. PMID: 34783654, PMCID: PMC8639152, DOI: 10.7554/elife.72568.Peer-Reviewed Original ResearchConceptsReceptor-mediated signalingAdiponectin receptorsAdiponectinLyme disease agentLyme disease spirochetePhospholipid metabolismPhosphatidylserine synthase ITick gutReceptor-like proteinMammalian homeostasisArthropod vectorsDisease agentsRNAi assaysRNA interferenceAlternative pathwaySynthase IPathwayMetabolic pathwaysTicksInfectionVector competence of human-biting ticks Ixodes scapularis, Amblyomma americanum and Dermacentor variabilis for Powassan virus
Sharma R, Cozens D, Armstrong P, Brackney D. Vector competence of human-biting ticks Ixodes scapularis, Amblyomma americanum and Dermacentor variabilis for Powassan virus. Parasites & Vectors 2021, 14: 466. PMID: 34503550, PMCID: PMC8427896, DOI: 10.1186/s13071-021-04974-1.Peer-Reviewed Original ResearchConceptsNaïve miceBALB/c micePublic health threatViremic miceC micePowassan virusIxodes sppIxodes scapularisInfection statusConclusionsOur findingsMiceDermacentor variabilisHealth threatPOWVTransmission fociTick speciesPotential roleInfected nymphsCompetent vectorsVector competenceEpidemiologyHuman riskFuture studiesResultsThe resultsVirus
2020
Epigenetic Regulation of Tick Biology and Vectorial Capacity
De S, Kitsou C, Sonenshine DE, Pedra JHF, Fikrig E, Kassis JA, Pal U. Epigenetic Regulation of Tick Biology and Vectorial Capacity. Trends In Genetics 2020, 37: 8-11. PMID: 33020021, PMCID: PMC8008791, DOI: 10.1016/j.tig.2020.09.012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArthropod VectorsDisease Transmission, InfectiousEpigenesis, GeneticHost-Pathogen InteractionsHumansTick-Borne DiseasesTicksRoles of Symbiotic Microorganisms in Arboviral Infection of Arthropod Vectors
Yin C, Sun P, Yu X, Wang P, Cheng G. Roles of Symbiotic Microorganisms in Arboviral Infection of Arthropod Vectors. Trends In Parasitology 2020, 36: 607-615. PMID: 32386795, DOI: 10.1016/j.pt.2020.04.009.Peer-Reviewed Original Research
2018
Vector Immunity and Evolutionary Ecology: The Harmonious Dissonance
Shaw DK, Tate AT, Schneider DS, Levashina EA, Kagan JC, Pal U, Fikrig E, Pedra JHF. Vector Immunity and Evolutionary Ecology: The Harmonious Dissonance. Trends In Immunology 2018, 39: 862-873. PMID: 30301592, PMCID: PMC6218297, DOI: 10.1016/j.it.2018.09.003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArthropod VectorsArthropodsBiological EvolutionEcologyHumansImmune ToleranceImmunityMammalsSignal TransductionConceptsVector immunityEvolutionary ecologyEvolutionary forcesEvolutionary ecologistsGenetic plasticityVector-Borne PathogensArthropod populationsAbiotic factorsMolecular immunologistsMicrobial assaultImmune systemInnate defenseRecent scientific breakthroughsEcologyEcologistsImmune responsePathogenicityImmunityPathogensPlasticityDefenseToleranceResistanceScientific breakthroughs
2015
Response to Esteve-Gassent et al.: flaB sequences obtained from Texas PCR products are identical to the positive control strain Borrelia burgdorferi B31
Norris SJ, Barbour AG, Fish D, Diuk-Wasser MA. Response to Esteve-Gassent et al.: flaB sequences obtained from Texas PCR products are identical to the positive control strain Borrelia burgdorferi B31. Parasites & Vectors 2015, 8: 310. PMID: 26050617, PMCID: PMC4489397, DOI: 10.1186/s13071-015-0899-x.Peer-Reviewed Original ResearchWhole genome capture of vector-borne pathogens from mixed DNA samples: a case study of Borrelia burgdorferi
Carpi G, Walter KS, Bent SJ, Hoen AG, Diuk-Wasser M, Caccone A. Whole genome capture of vector-borne pathogens from mixed DNA samples: a case study of Borrelia burgdorferi. BMC Genomics 2015, 16: 434. PMID: 26048573, PMCID: PMC4458057, DOI: 10.1186/s12864-015-1634-x.Peer-Reviewed Original ResearchConceptsWhole-genome captureGenome captureGenomic studiesPopulation genomic studiesArthropod vectorsPathogen DNABorrelia burgdorferi genomeNext-generation sequencing technologiesWhole genome sequencesMixed DNA templatesCulture-independent methodsGeneration sequencing technologyPathogen sequence dataFine-resolution studiesGenome sequenceVector-Borne PathogensMixed DNA samplesSingle nucleotide polymorphismsComplete genomeEvolutionary dynamicsSequence dataSequencing technologiesDisease vectorsStudy systemDNA templateBorrelia miyamotoi infection in nature and in humans
Krause PJ, Fish D, Narasimhan S, Barbour AG. Borrelia miyamotoi infection in nature and in humans. Clinical Microbiology And Infection 2015, 21: 631-639. PMID: 25700888, PMCID: PMC4470780, DOI: 10.1016/j.cmi.2015.02.006.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsB. miyamotoi infectionMiyamotoi infectionClinical manifestationsB. miyamotoiLyme diseaseBorrelia miyamotoi infectionAcute febrile illnessCommon clinical manifestationsBlood smear examinationPublic health importanceHuman granulocytic anaplasmosisFever group spirochetesFebrile illnessAntibiotic therapyDisease groupEtiologic diagnosisSevere diseaseSmear examinationIxodes persulcatus ticksHealth importanceInfectionHuman casesGranulocytic anaplasmosisBorrelia miyamotoiDisease
2014
Analysis of the intergenic sequences provided by Feria-Arroyo et al. does not support the claim of high Borrelia burgdorferi tick infection rates in Texas and northeastern Mexico
Norris SJ, Barbour AG, Fish D, Diuk-Wasser MA. Analysis of the intergenic sequences provided by Feria-Arroyo et al. does not support the claim of high Borrelia burgdorferi tick infection rates in Texas and northeastern Mexico. Parasites & Vectors 2014, 7: 467. PMID: 25428816, PMCID: PMC4203928, DOI: 10.1186/s13071-014-0467-9.Peer-Reviewed Original Research
2010
Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold
Neelakanta G, Sultana H, Fish D, Anderson JF, Fikrig E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. Journal Of Clinical Investigation 2010, 120: 3179-3190. PMID: 20739755, PMCID: PMC2929727, DOI: 10.1172/jci42868.Peer-Reviewed Original Research
2009
Antibodies against a Tick Protein, Salp15, Protect Mice from the Lyme Disease Agent
Dai J, Wang P, Adusumilli S, Booth CJ, Narasimhan S, Anguita J, Fikrig E. Antibodies against a Tick Protein, Salp15, Protect Mice from the Lyme Disease Agent. Cell Host & Microbe 2009, 6: 482-492. PMID: 19917502, PMCID: PMC2843562, DOI: 10.1016/j.chom.2009.10.006.Peer-Reviewed Original ResearchConceptsArthropod-borne pathogensTick-borne BorreliaTick salivary proteinsTick proteinsB. burgdorferiLyme diseaseDisease agentsTick-borne illnessB. burgdorferi infectionLyme disease agentHuman vaccinesSalp15Infection of miceB. burgdorferi antigensMicrobial toxinsMammalian hostsBorrelia burgdorferiPathogensMechanism of actionBurgdorferi infectionProtect miceMedical importanceBurgdorferiProtective capacityMice
2008
VectorBase: a data resource for invertebrate vector genomics
Lawson D, Arensburger P, Atkinson P, Besansky N, Bruggner R, Butler R, Campbell K, Christophides G, Christley S, Dialynas E, Hammond M, Hill C, Konopinski N, Lobo N, MacCallum R, Madey G, Megy K, Meyer J, Redmond S, Severson D, Stinson E, Topalis P, Birney E, Gelbart W, Kafatos F, Louis C, Collins F. VectorBase: a data resource for invertebrate vector genomics. Nucleic Acids Research 2008, 37: d583-d587. PMID: 19028744, PMCID: PMC2686483, DOI: 10.1093/nar/gkn857.Peer-Reviewed Original ResearchConceptsBody louse Pediculus humanusBioinformatics Resource CenterCommunity annotation systemGene expression repositoriesGenome informationInvertebrate vectorsAnopheles gambiaeInsecticide resistancePediculus humanusVectorBaseMosquito speciesHuman pathogensAedes aegyptiSoftware infrastructureCulex quinquefasciatusIxodes scapularisAnnotation systemVector genomesData resourcesResearch communityGenomeGenomicsGambiaeSpeciesMicroarray
2004
Essential Role for OspA/B in the Life Cycle of the Lyme Disease Spirochete
Yang XF, Pal U, Alani SM, Fikrig E, Norgard MV. Essential Role for OspA/B in the Life Cycle of the Lyme Disease Spirochete. Journal Of Experimental Medicine 2004, 199: 641-648. PMID: 14981112, PMCID: PMC2213294, DOI: 10.1084/jem.20031960.Peer-Reviewed Original Research
2003
A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States.
Brownstein JS, Holford TR, Fish D. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environmental Health Perspectives 2003, 111: 1152-1157. PMID: 12842766, PMCID: PMC1241567, DOI: 10.1289/ehp.6052.Peer-Reviewed Original Research
2000
The Lyme disease vaccine: conception, development, and implementation.
Thanassi W, Schoen R. The Lyme disease vaccine: conception, development, and implementation. Annals Of Internal Medicine 2000, 132: 661-8. PMID: 10766685, DOI: 10.7326/0003-4819-132-8-200004180-00009.Peer-Reviewed Original Research
1991
Landscape Ecology of Lyme Disease in a Residential Area of Westchester County, New York
Maupin G, Fish D, Zultowsky J, Campos E, Piesman J. Landscape Ecology of Lyme Disease in a Residential Area of Westchester County, New York. American Journal Of Epidemiology 1991, 133: 1105-1113. PMID: 2035514, DOI: 10.1093/oxfordjournals.aje.a115823.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply