2025
Autoimmune mechanisms elucidated through muscle acetylcholine receptor structures
Li H, Pham M, Teng J, O'Connor K, Noviello C, Hibbs R. Autoimmune mechanisms elucidated through muscle acetylcholine receptor structures. Cell 2025, 188: 2390-2406.e20. PMID: 40203823, PMCID: PMC12118449, DOI: 10.1016/j.cell.2025.03.004.Peer-Reviewed Original ResearchConceptsMyasthenia gravisPatient-derived monoclonal antibodiesAntibody-mediated autoimmune disordersVariable patient responseDiverse pathogenic mechanismsAcetylcholine (AChMG immunopathogenesisHuman muscle AChRReceptor blockadeReceptor inhibitionAdult AChRAutoimmune mechanismsAutoimmune disordersChannel activitySkeletal muscle contractionMuscle weaknessEpitope diversityPathogenic mechanismsMuscle AChRIonotropic receptorsMonoclonal antibodiesComplement activationPatient responseMuscle contractionAChR
2022
The clinical need for clustered AChR cell-based assay testing of seronegative MG
Masi G, Li Y, Karatz T, Pham MC, Oxendine SR, Nowak RJ, Guptill JT, O'Connor KC. The clinical need for clustered AChR cell-based assay testing of seronegative MG. Journal Of Neuroimmunology 2022, 367: 577850. PMID: 35366559, PMCID: PMC9106915, DOI: 10.1016/j.jneuroim.2022.577850.Peer-Reviewed Original ResearchConceptsSNMG patientsMyasthenia gravisAChR-specific B cellsClinical needAcetylcholine receptor autoantibodiesSeronegative MG patientsSeronegative myasthenia gravisCell-based assaysAutoantibody positivityTrial eligibilityMG patientsReceptor autoantibodiesPatientsB cellsU.S. CentersNew treatmentsAssaysGravisAutoantibodiesSerostatusAChRPositivity
2019
Loss of Protein Kinase Csnk2b/CK2β at Neuromuscular Junctions Affects Morphology and Dynamics of Aggregated Nicotinic Acetylcholine Receptors, Neuromuscular Transmission, and Synaptic Gene Expression
Eiber N, Rehman M, Kravic B, Rudolf R, Sandri M, Hashemolhosseini S. Loss of Protein Kinase Csnk2b/CK2β at Neuromuscular Junctions Affects Morphology and Dynamics of Aggregated Nicotinic Acetylcholine Receptors, Neuromuscular Transmission, and Synaptic Gene Expression. Cells 2019, 8: 940. PMID: 31434353, PMCID: PMC6721821, DOI: 10.3390/cells8080940.Peer-Reviewed Original ResearchConceptsSynaptic gene expressionGene expressionNicotinic acetylcholine receptorsClustering of AChRsNeuromuscular junctionCultured muscle cellsAcetylcholine receptorsDistinctive proteinsCK2Neuromuscular transmissionAChR clustersΒ-subunitCompound muscle action potentialHigh turnover rateCK2βCell proliferationMuscle action potentialsNMJ fragmentationSkeletal muscle fibersPrecise roleAge-dependent decreaseMuscle cellsAcetylcholine esterase inhibitorsAChRExpression
2017
B cells in the pathophysiology of myasthenia gravis
Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O’Connor K. B cells in the pathophysiology of myasthenia gravis. Muscle & Nerve 2017, 57: 172-184. PMID: 28940642, PMCID: PMC5767142, DOI: 10.1002/mus.25973.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsMyasthenia gravisB cellsMuscle-specific tyrosine kinaseArchetypal autoimmune diseaseMuscle end platesProduction of autoantibodiesMost patientsPathogenic autoantibodiesAutoimmune diseasesAdaptive immunityHuman studiesAcetylcholine receptorsFunctional AChRsNeuromuscular junctionPostsynaptic proteinsAutoantibodiesCellular immunologyMolecular immunologyGravisImmunopathologyPathologyAChRImmunologyTyrosine kinaseEnd plates
1996
Rabies virus binding to the nicotinic acetylcholine receptor α subunit demonstrated by virus overlay protein binding assay
Gastka M, Horvath J, Lentz T. Rabies virus binding to the nicotinic acetylcholine receptor α subunit demonstrated by virus overlay protein binding assay. Journal Of General Virology 1996, 77: 2437-2440. PMID: 8887475, DOI: 10.1099/0022-1317-77-10-2437.Peer-Reviewed Original ResearchConceptsAlpha subunitNicotinic acetylcholine receptor α subunitAcetylcholine receptor α subunitElectric organ membranesVirus overlay proteinVirus overlay protein binding assaysTransfer of proteinsReceptor α subunitProtein binding assaysAChR alpha subunitOverlay proteinRabies virusΑ-subunitSubunitsGel electrophoresisAcetylcholine receptorsBinding assaysCuraremimetic neurotoxinsProteinMembraneVirusBindingAChRBlot
1991
Changes in channel properties of acetylcholine receptors during the time course of thiol chemical modifications
Bouzat C, Barrantes F, Sigworth F. Changes in channel properties of acetylcholine receptors during the time course of thiol chemical modifications. Pflügers Archiv - European Journal Of Physiology 1991, 418: 51-61. PMID: 2041725, DOI: 10.1007/bf00370451.Peer-Reviewed Original ResearchConceptsSingle acetylcholine receptor channelsHigh agonist concentrationsPatch-clamp techniqueOpen timeConcentration of NEMSilent periodAcetylcholine receptorsN-ethylmaleimideAcetylcholine receptor channelsAgonist concentrationsChannel open probabilityReceptor channelsAChRMM N-ethylmaleimideTime of exposureRate of occurrenceSingle-channel currentsTime courseNEM treatmentControl receptorsReceptorsSignificant changesTreatmentShort openingsSlight reduction
1988
Neurotoxin-Binding Site on The Acetylcholine Receptor
Lentz T, Wilson P. Neurotoxin-Binding Site on The Acetylcholine Receptor. International Review Of Neurobiology 1988, 29: 117-160. PMID: 3042662, DOI: 10.1016/s0074-7742(08)60085-9.Peer-Reviewed Original ResearchConceptsAcetylcholine-binding siteBinding of acetylcholineToxin-binding sitesPrimary amino acid sequenceAmino acid sequenceAcetylcholine receptorsCation-selective channelsAcid sequenceGenetic engineeringEssential functionsChemical signalsConformational changesNicotinic acetylcholine receptorsUse of toxinsMotor nerve terminalsMuscle cellsAChRCuraremimetic neurotoxinsBindingNeurotransmitter acetylcholineNeuromuscular junctionNicotinic AChRsReceptorsNerve terminalsHigh affinity
1986
Binding of rabies virus to purified Torpedo acetylcholine receptor
Lentz T, Benson R, Klimowicz D, Wilson P, Hawrot E. Binding of rabies virus to purified Torpedo acetylcholine receptor. Brain Research 1986, 1: 211-219. DOI: 10.1016/0169-328x(86)90027-6.Peer-Reviewed Original ResearchAcetylcholine receptorsRabies virusRabies virus receptorTorpedo acetylcholine receptorReceptor concentrationNeurotransmitter receptorsΑ-bungarotoxinVirus receptorTorpedo electric organReceptorsVirusIncubation mediumVirus interactionsVirus particlesVirus concentrationDirect bindingElectric organAtropineAcetylcholineAChRBinding of rabies virus to purified Torpedo acetylcholine receptor.
Lentz T, Benson R, Klimowicz D, Wilson P, Hawrot E. Binding of rabies virus to purified Torpedo acetylcholine receptor. Brain Research 1986, 387: 211-9. PMID: 3828757, DOI: 10.1016/0169-328x(86)90027-6.Peer-Reviewed Original ResearchConceptsAcetylcholine receptorsRabies virusRabies virus receptorTorpedo acetylcholine receptorReceptor concentrationNeurotransmitter receptorsVirus receptorTorpedo electric organReceptorsVirusIncubation mediumVirus interactionsVirus particlesVirus concentrationDirect bindingElectric organAtropineAcetylcholineAChR
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply