2002
Coexpression of Wild-Type Tyrosinase Enhances Maturation of Temperature-Sensitive Tyrosinase Mutants
Halaban R, Cheng E, Hebert DN. Coexpression of Wild-Type Tyrosinase Enhances Maturation of Temperature-Sensitive Tyrosinase Mutants. Journal Of Investigative Dermatology 2002, 119: 481-488. PMID: 12190874, DOI: 10.1046/j.1523-1747.2002.01824.x.Peer-Reviewed Original ResearchConceptsWild-type proteinTyrosinase mutantsMutant proteinsGlycosylation-deficient mutantsGlycosylation-deficient formsOculocutaneous albinism 1Wild-type tyrosinaseDevelopment of pigmentsDifferent mutant allelesType I membraneActivity-dependent mannerNonpermissive temperatureMutant allelesEndoplasmic reticulumTypes of mutationsMutantsFunction mutationsCarbohydrate processingMelanin synthesisProteinCoexpressionMelanocytesTyrosinase activityMutationsMaturation
1996
A Yeast Protein Related to a Mammalian Ras-Binding Protein, Vps9p, Is Required for Localization of Vacuolar Proteins
Burd C, Mustol P, Schu P, Emr S. A Yeast Protein Related to a Mammalian Ras-Binding Protein, Vps9p, Is Required for Localization of Vacuolar Proteins. Molecular And Cellular Biology 1996, 16: 2369-2377. PMID: 8628304, PMCID: PMC231225, DOI: 10.1128/mcb.16.5.2369.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAmino Acid SequenceAnimalsCarrier ProteinsCloning, MolecularFungal ProteinsGenes, FungalGenetic Complementation TestGuanine Nucleotide Exchange FactorsHumansMammalsMolecular Sequence DataMutagenesisPolymerase Chain ReactionRecombinant ProteinsSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence Homology, Amino AcidTemperatureVacuolesVesicular Transport ProteinsConceptsVacuolar protein sortingProtein sortingVacuolar proteinVPS pathwayVacuolar protein sorting (VPS) genesTemperature-sensitive growth defectTemperature-conditional alleleVacuolar protein precursorsFamily of proteinsSecretion of proteinsRab GTPaseRA-binding proteinsTransport vesiclesYeast proteinsHomology domainYeast SaccharomycesGrowth defectHuman proteinsVps9pDNA sequencesGene productsCytosolic proteinsNonpermissive temperatureCarboxypeptidase YIntracellular transport
1993
Folding in vivo of bacterial cytoplasmic proteins: Role of GroEL
Horwich A, Low K, Fenton W, Hirshfield I, Furtak K. Folding in vivo of bacterial cytoplasmic proteins: Role of GroEL. Cell 1993, 74: 909-917. PMID: 8104102, DOI: 10.1016/0092-8674(93)90470-b.Peer-Reviewed Original ResearchMeSH KeywordsATP-Binding Cassette TransportersBacterial ProteinsBacteriophage lambdaCarrier ProteinsChaperonin 60Citrate (si)-SynthaseEscherichia coliEscherichia coli ProteinsHeat-Shock ProteinsKetoglutarate Dehydrogenase ComplexMaltoseMaltose-Binding ProteinsMethionineMonosaccharide Transport ProteinsOperonOrnithine CarbamoyltransferasePlasmidsPolyribonucleotide NucleotidyltransferasePromoter Regions, GeneticProtein BiosynthesisProtein FoldingProtein Sorting SignalsSequence DeletionTemperatureTransduction, GeneticConceptsCytoplasmic proteinsTemperature-sensitive lethal mutationBacterial cytoplasmic proteinsE. coli chaperonin GroELMaltose-binding proteinRole of GroELNative tertiary structureEssential genesChaperonin GroELBacterial cytoplasmMutant cellsLethal mutationsNonpermissive temperatureGenetic informationPolynucleotide phosphorylaseGeneral translationTertiary structureCitrate synthasePathways of transferKetoglutarate dehydrogenaseGeneral roleGroELNative conformationProteinTest proteinsYeast seryl‐tRNA synthetase expressed in Escherichia coli recognizes bacterial serine‐specific tRNAs in vivo
WEYGAND‐DURAŠEVIĆ I, Nenad B, Dieter J, Dieter S. Yeast seryl‐tRNA synthetase expressed in Escherichia coli recognizes bacterial serine‐specific tRNAs in vivo. The FEBS Journal 1993, 214: 869-877. PMID: 7686490, DOI: 10.1111/j.1432-1033.1993.tb17990.x.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast SerRSYeast seryl-tRNA synthetaseEscherichia coliE. coli tRNAVivo complementationProkaryotic hostsTwo-step purificationSer geneHomologous tRNAsNonpermissive temperatureSer mutantE. coli strainsTRNAE. coliColi strainsColiSynthetaseSerRSVivoComplementationMutantsSaccharomycesGenesPromoter
1989
Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant
Whitt M, Chong L, Rose J. Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant. Journal Of Virology 1989, 63: 3569-3578. PMID: 2547986, PMCID: PMC250946, DOI: 10.1128/jvi.63.9.3569-3578.1989.Peer-Reviewed Original ResearchConceptsCytoplasmic domainG proteinsAmino acidsWild-type G proteinNormal cytoplasmic domainG protein mutantsCytoplasmic domain sequencesVesicular stomatitis virus glycoproteinVSV G proteinTemperature-sensitive mutantViral G proteinSurface expressionG protein expressionProtein mutantsTransient expressionVirus buddingNonpermissive temperatureDomain sequencesMutantsCell surfaceGlycoprotein mutantsProteinImmunogold labelingSucrose gradientsEfficient assembly
1985
A single amino acid substitution in a hydrophobic domain causes temperature-sensitive cell-surface transport of a mutant viral glycoprotein
Gallione C, Rose J. A single amino acid substitution in a hydrophobic domain causes temperature-sensitive cell-surface transport of a mutant viral glycoprotein. Journal Of Virology 1985, 54: 374-382. PMID: 2985803, PMCID: PMC254807, DOI: 10.1128/jvi.54.2.374-382.1985.Peer-Reviewed Original ResearchConceptsCDNA clonesHydrophobic domainAmino acidsCell surface transportSingle amino acid substitutionVesicular stomatitis virus glycoproteinWild-type parent strainDNA sequence analysisPolar amino acidsHydrophobic amino acidsAmino acid changesAmino acid substitutionsProtein transportDNA sequencesNonpermissive temperatureVesicular stomatitis virusCOS cellsNonconservative substitutionsSequence analysisSpontaneous revertantsAcid substitutionsAcid changesSingle substitutionTransport defectStomatitis virus
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply