2011
Separating Automatic and Intentional Inhibitory Mechanisms of Attention in Adults With Attention-Deficit/Hyperactivity Disorder
Roberts W, Fillmore MT, Milich R. Separating Automatic and Intentional Inhibitory Mechanisms of Attention in Adults With Attention-Deficit/Hyperactivity Disorder. Journal Of Psychopathology And Clinical Science 2011, 120: 223-233. PMID: 21058752, PMCID: PMC3065892, DOI: 10.1037/a0021408.Peer-Reviewed Original ResearchConceptsAttention-deficit/hyperactivity disorderInhibitory controlComparison adultsResponse taskHyperactivity disorderEye-tracking taskInhibitory control mechanismsInterference taskSelective attentionADHD groupCognitive scienceInhibitory deficitsTask performanceIntentional mechanismsReflexive saccadesTaskComparison groupAdultsFundamental distinctionInhibitory mechanismDisordersAttentionMeasuresSaccadesStimuliChapter Fifteen Probing Serpin Conformational Change Using Mass Spectrometry and Related Methods
Tsutsui Y, Sarkar A, Wintrode P. Chapter Fifteen Probing Serpin Conformational Change Using Mass Spectrometry and Related Methods. Methods In Enzymology 2011, 501: 325-350. PMID: 22078541, PMCID: PMC3679668, DOI: 10.1016/b978-0-12-385950-1.00015-8.Peer-Reviewed Original ResearchConceptsStructural mass spectrometry techniquesHydrogen/deuterium exchangeMass spectrometry techniquesDeuterium exchangeIon mobility mass spectrometrySpectrometry techniquesMass spectrometryMobility mass spectrometrySerpin polymersConformational flexibilitySerpin functionSerpin polymerizationChemical footprintingConformational changesThermodynamic metastabilitySpectrometryChapter FifteenSerpinsStructural distributionPolymerizationPolymersStabilityMisfoldingInhibitory mechanismFootprinting
2007
State Changes Rapidly Modulate Cortical Neuronal Responsiveness
Hasenstaub A, Sachdev RN, McCormick DA. State Changes Rapidly Modulate Cortical Neuronal Responsiveness. Journal Of Neuroscience 2007, 27: 9607-9622. PMID: 17804621, PMCID: PMC6672966, DOI: 10.1523/jneurosci.2184-07.2007.Peer-Reviewed Original ResearchConceptsNeuronal responsivenessWhisker stimulationWhisker stimuliCircuit activityCortical neuronal responsivenessLocal circuit activityNetwork activityAction potential responsesLocal network activityRodent somatosensory cortexPostsynaptic potentialsSomatosensory cortexCortical neuronsIntracellular injectionWhisker deflectionCortical stateWhisker movementsPotential responsivenessAbility of stimuliSensory stimuliInhibitory mechanismStimulationResponsivenessSpontaneous alterationUp states
2006
Selecting and ignoring the component features of a visual object: A negative priming paradigm
Fanini A, Nobre A, Chelazzi L. Selecting and ignoring the component features of a visual object: A negative priming paradigm. Visual Cognition 2006, 14: 584-618. DOI: 10.1080/13506280500195367.Peer-Reviewed Original ResearchVisual objectsNegative priming procedureResponse selection stageFeature-selective attentionConflict interferencePriming procedureInhibitory mechanismCognitive architectureProcessing stagesProcessing fateSpatial locationAttention mechanismSelection stageComponent featuresAttentionIndividual featuresIrrelevant features
2001
Pyramidal cell axons show a local specialization for GABA and 5‐HT inputs in monkey and human cerebral cortex
DeFelipe J, Arellano J, Gómez A, Azmitia E, Muñoz A. Pyramidal cell axons show a local specialization for GABA and 5‐HT inputs in monkey and human cerebral cortex. The Journal Of Comparative Neurology 2001, 433: 148-155. PMID: 11283956, DOI: 10.1002/cne.1132.Peer-Reviewed Original ResearchConceptsChandelier cell axon terminalsGamma-aminobutyric acidPyramidal cell axonsCerebral cortexPyramidal cellsAxon terminalsCell axonsHuman cerebral cortexDouble-labeling experimentsPowerful inhibitory mechanismChandelier cellsMonkey neocortexGABAergic interneuronsImmunoreactive fibersSerotonin receptorsSerotonin afferentsAxonal specializationsParacrine mannerLayers IISynaptic connectionsImmunocytochemical methodsProximal portionInhibitory mechanismClose appositionConfocal laser microscopy
2000
Metabolism and Mode of Inhibition of Varicella-Zoster Virus by l-β-5-Bromovinyl-(2-hydroxymethyl)-(1,3-dioxolanyl)uracil Is Dependent on Viral Thymidine Kinase
Li L, Dutschman G, Gullen E, Tsujii E, Grill S, Choi Y, Chu C, Cheng Y. Metabolism and Mode of Inhibition of Varicella-Zoster Virus by l-β-5-Bromovinyl-(2-hydroxymethyl)-(1,3-dioxolanyl)uracil Is Dependent on Viral Thymidine Kinase. Molecular Pharmacology 2000, 58: 1109-1114. DOI: 10.1016/s0026-895x(24)12485-6.Peer-Reviewed Original ResearchViral thymidine kinaseHuman embryonic lungThymidine kinaseVaricella-zoster virus growthMitochondrial DNA synthesisHuman cytosolic thymidine kinaseCytosolic thymidine kinaseNucleoside analogsDeoxyuridine analogsCell growthVirus growthDNA synthesisKinaseE-5-(2-bromovinyl)-2'-deoxyuridineCell culturesInhibition of CEMMonophosphate metaboliteEmbryonic lungTriphosphate metaboliteL-configurationAntiviral activityD-configurationInhibitory mechanismCellsVaricella-zoster virus
1994
Abnormalities in rapid, automatic aspects of attention in schizophrenia: blunted inhibition of return
Huey E, Wexler B. Abnormalities in rapid, automatic aspects of attention in schizophrenia: blunted inhibition of return. Schizophrenia Research 1994, 14: 57-63. PMID: 7893622, DOI: 10.1016/0920-9964(94)90009-4.Peer-Reviewed Original ResearchConceptsHealthy subjectsHealthy control subjectsStable schizophrenic outpatientsInhibition of returnMs intervalsControl subjectsSchizophrenic outpatientsNormal intervalsInhibitory mechanismInhibitionVisual stimuliSchizophrenicsSubjectsStimuliIntervalPresent experimentsOutpatientsAbnormalitiesSchizophrenia
1992
Startle gating deficits occur across prepulse intensities in schizophrenic patients
Grillon C, Ameli R, Charney D, Krystal J, Braff D. Startle gating deficits occur across prepulse intensities in schizophrenic patients. Biological Psychiatry 1992, 32: 939-943. PMID: 1467378, DOI: 10.1016/0006-3223(92)90183-z.Peer-Reviewed Original ResearchConceptsPrepulse inhibitionPrepulse stimulusSchizophrenic patientsStartle reflexControl groupStartle gating deficitsCentral inhibitory mechanismsDeficient prepulse inhibitionGating deficitsStartling stimulusNormal controlsPatientsReflexPrepulse intensityInhibitory mechanismFurther studiesStimuliInhibitionGroup
1986
Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance
McCormick D, Prince D. Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. Nature 1986, 319: 402-405. PMID: 2418361, DOI: 10.1038/319402a0.Peer-Reviewed Original ResearchConceptsNeuronal activityCholinergic inhibitory mechanismSingle spike activityRole of acetylcholineApplication of acetylcholineCentral nervous systemIntrinsic membrane propertiesAcetylcholine inducesM2 subclassCholinergic actionCholinergic inhibitionCholinergic inputMuscarinic receptorsBurst dischargesExcitatory modulatorThalamic neuronesNervous systemSpike activityFiring patternsPotassium conductanceReticular neuronesAcetylcholineNeuronesReticular systemInhibitory mechanism
1978
Activation of locus coeruleus neurons by peripheral stimuli: Modulation by a collateral inhibitory mechanism
Cedarbaum J, Aghajanian G. Activation of locus coeruleus neurons by peripheral stimuli: Modulation by a collateral inhibitory mechanism. Life Sciences 1978, 23: 1383-1392. PMID: 214648, DOI: 10.1016/0024-3205(78)90398-3.Peer-Reviewed Original ResearchConceptsLocus coeruleusNerve stimulationLocus coeruleus neuronsRat locus coeruleusPeripheral nerve stimulationBursts of spikesNeuronal responsivityNoradrenergic neuronsCoeruleus neuronsAntidromic activationAxon collateralsAdrenergic antagonistsPutative transmittersNoxious stimuliPeripheral stimuliUnit firingReduced responsivityAutoinhibitory actionInhibitory mechanismPiperoxaneNeuronsAdditional stimulusStimulationCollateralsStimuli
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply