2025
Mutant prion protein enhances NMDA receptor activity, activates PKC, and triggers rapid excitotoxicity in mice
Lin J, Callender J, Mayfield J, McClatchy D, Ojeda-Juárez D, Pourhamzeh M, Soldau K, Kurt T, Danque G, Khuu H, Ronson J, Pizzo D, Du Y, Gruber M, Sevillano A, Wang J, Orrú C, Chen J, Funk G, Aguilar-Calvo P, Aulston B, Roy S, Rho J, Bui J, Newton A, Lipton S, Caughey B, Patrick G, Doré K, Yates J, Sigurdson C. Mutant prion protein enhances NMDA receptor activity, activates PKC, and triggers rapid excitotoxicity in mice. Journal Of Clinical Investigation 2025, 135: e186432. PMID: 40185484, PMCID: PMC12077891, DOI: 10.1172/jci186432.Peer-Reviewed Original ResearchConceptsN-methyl-D-aspartate receptorsProtein kinase CAmino terminusPrion proteinN-methyl-D-aspartateMutant prion proteinNMDA receptor activationN-linked glycosylation sitesExcitatory-inhibitory imbalanceHippocampal pyramidal neuronsDownstream signaling eventsActivate protein kinase CNMDAR channelsNeuronal hyperexcitabilityFunctional motifsGlutamate receptorsCalcium influxPhosphoproteomic analysisPyramidal neuronsGlycosylation sitesSignaling eventsReceptor activationPrion-infected miceDendritic beadingSynapse loss
2023
Bump-and-hole engineering of human polypeptide N-acetylgalactosamine transferases to dissect their protein substrates and glycosylation sites in cells
Calle B, Gonzalez-Rodriguez E, Mahoney K, Cioce A, Bineva-Todd G, Tastan O, Roustan C, Flynn H, Malaker S, Schumann B. Bump-and-hole engineering of human polypeptide N-acetylgalactosamine transferases to dissect their protein substrates and glycosylation sites in cells. STAR Protocols 2023, 4: 101974. PMID: 36633947, PMCID: PMC9843269, DOI: 10.1016/j.xpro.2022.101974.Peer-Reviewed Original ResearchConceptsProtein substratesGlycosylation sitesGalNAc-T familyTransfection of cellsIndividual glycosyltransferasesBioorthogonal reportersN-acetylgalactosamine transferaseSubstrate specificityBiological functionsGalNAc-TsDisease relevanceMolecular biologyComplete detailsGlycosyltransferasesTransferaseCellsBiosynthesisBiologyReporterTransfectionGlycansSubstrateEnzymeHole engineeringSites
2022
Cell-specific bioorthogonal tagging of glycoproteins
Cioce A, Calle B, Rizou T, Lowery SC, Bridgeman VL, Mahoney KE, Marchesi A, Bineva-Todd G, Flynn H, Li Z, Tastan OY, Roustan C, Soro-Barrio P, Rafiee MR, Garza-Garcia A, Antonopoulos A, Wood TM, Keenan T, Both P, Huang K, Parmeggian F, Snijders AP, Skehel M, Kjær S, Fascione MA, Bertozzi CR, Haslam SM, Flitsch SL, Malaker SA, Malanchi I, Schumann B. Cell-specific bioorthogonal tagging of glycoproteins. Nature Communications 2022, 13: 6237. PMID: 36284108, PMCID: PMC9596482, DOI: 10.1038/s41467-022-33854-0.Peer-Reviewed Original ResearchConceptsMass spectrometry glycoproteomicsArtificial biosynthetic pathwayTumor-derived cell linesCellular model systemNon-transfected cellsCellular functionsProtein glycosylationBiosynthetic pathwayProteome analysisGlycosylation sitesBioorthogonal tagsCancer developmentCell linesModel systemImportant modulatorIntricate interactionsCo-culture modelGlycoproteinCellsGlycoprotein expressionMouse modelGlycoproteomeGlycosylationTaggingMonoculture
2016
O-Glycosylation of a Secretory Granule Membrane Enzyme Is Essential for Its Endocytic Trafficking*
Vishwanatha KS, Bäck N, Lam TT, Mains RE, Eipper BA. O-Glycosylation of a Secretory Granule Membrane Enzyme Is Essential for Its Endocytic Trafficking*. Journal Of Biological Chemistry 2016, 291: 9835-9850. PMID: 26961877, PMCID: PMC4850319, DOI: 10.1074/jbc.m115.711838.Peer-Reviewed Original ResearchConceptsHigh molecular weight complexesPAM-1Molecular weight complexesEndocytic traffickingCytosolic domainBlue native PAGE analysisAtT-20 corticotrope tumor cellsWeight complexesCrucial post-translational modificationPost-translational modificationsO-glycosylation sitesPeptidylglycine αFurin-like convertasesNative PAGE analysisSoluble fragmentCorticotrope tumor cellsAlternative splicingEndocytic pathwayCatalytic domainEndocytic compartmentsGlycosylation sitesO-glycosylationMultivesicular bodiesMembrane enzymeEndoproteolytic cleavage
2015
Functional Significance of Glycosylation of Cl‐/oxalate exchanger Slc26a6
Thomson R, Thomson C, Aronson P. Functional Significance of Glycosylation of Cl‐/oxalate exchanger Slc26a6. The FASEB Journal 2015, 29 DOI: 10.1096/fasebj.29.1_supplement.970.6.Peer-Reviewed Original ResearchIntrinsic transport functionTransport functionFunctional significanceSite-specific mutagenesisProtein traffickingCell surface expressionSurface deliveryBiotinylation studiesGlycosylation sitesEndocytic retrievalSecond extracellular loopExtracellular loopCell surfaceGlycosylationPutative second extracellular loopGlycan residuesTraffickingHuman SLC26A6Trafficking studiesDistinct sitesEnzyme digestionEnzymatic digestsDependent uptakeSlc26a6Glycosidic linkages
2014
N-Glycosylation Determines the Abundance of the Transient Receptor Potential Channel TRPP2*
Hofherr A, Wagner C, Fedeles S, Somlo S, Köttgen M. N-Glycosylation Determines the Abundance of the Transient Receptor Potential Channel TRPP2*. Journal Of Biological Chemistry 2014, 289: 14854-14867. PMID: 24719335, PMCID: PMC4031537, DOI: 10.1074/jbc.m114.562264.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAsparagineBinding SitesBlotting, WesternCell LineCells, CulturedGlucosidasesGlycosylationHEK293 CellsHeLa CellsHumansIntracellular Signaling Peptides and ProteinsLysosomesMass SpectrometryMiceMice, KnockoutMicroscopy, FluorescenceMutationPolycystic Kidney, Autosomal DominantProtein Serine-Threonine KinasesProteolysisPyruvate Dehydrogenase Acetyl-Transferring KinaseConceptsGlucosidase IINon-catalytic β-subunitsProtein expressionFirst extracellular loopAutosomal dominant polycystic liver diseaseEfficient biogenesisGenetic interactionsMembrane proteinsBiochemical approachesN-glycosylationGenetic approachesTRPP2Glycosylation sitesBiological roleLysosomal degradationΒ-subunitChemical inhibitionBiogenesisExtracellular loopNonselective cation channelsIon channelsBiological importanceGlycosylationCation channelsProtein levels
2010
N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion*
Fogel AI, Li Y, Giza J, Wang Q, Lam TT, Modis Y, Biederer T. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion*. Journal Of Biological Chemistry 2010, 285: 34864-34874. PMID: 20739279, PMCID: PMC2966101, DOI: 10.1074/jbc.m110.120865.Peer-Reviewed Original ResearchConceptsN-glycosylationTrans-synaptic interactionsN-glycansSite-specific N-glycansSynaptic cell adhesion molecule 1Site-specific N-glycosylationTrans-synaptic adhesionPost-translational modificationsSelect adhesion moleculesMutational studiesSynaptic adhesionGlycosylation sitesHeterophilic interactionsIg1 domainSynapse inductionPostsynaptic membraneAdhesion moleculesNeurobiological questionsSynaptic cleftStructural modelingPresynaptic terminalsDifferential mannerSialic acidCell adhesion molecule-1Adhesion
1994
Membrane topology of the epithelial sodium channel in intact cells
Canessa C, Merillat A, Rossier B. Membrane topology of the epithelial sodium channel in intact cells. American Journal Of Physiology 1994, 267: c1682-c1690. PMID: 7810611, DOI: 10.1152/ajpcell.1994.267.6.c1682.Peer-Reviewed Original ResearchConceptsLarge hydrophilic loopHydrophilic loopIntact cellsMembrane topologyEpithelial sodium channelPutative transmembrane domainsStop-transfer signalAmiloride-sensitive epithelial sodium channelCell-free translation assaysShort NH2Transmembrane domainMembrane insertionHomologous subunitsXenopus laevis oocytesTranslation assaysSodium channelsGlycosylation sitesCOOH terminusCytoplasmic sideFunctional expressionTerminal endSubunitsHydrophilic NH2Laevis oocytesAlpha-rENaC
1993
Two members of the ERabp gene family are expressed differentially in reproductive organs but to similar levels in the coleoptile of maize
Hesse T, Garbers C, Brzobohaty B, Kreimer G, Söll D, Melkonian M, Schell J, Palme K. Two members of the ERabp gene family are expressed differentially in reproductive organs but to similar levels in the coleoptile of maize. Plant Molecular Biology 1993, 23: 57-66. PMID: 8219056, DOI: 10.1007/bf00021419.Peer-Reviewed Original ResearchConceptsC-terminal KDEL motifExpression patternsN-terminal hydrophobic leader sequenceColeoptiles of maizePrimary amino acid sequenceFemale flower partsHydrophobic leader sequenceAmino acid sequencePotential glycosylation sitesGene familyFlower organsKDEL motifProtein familyCDNA clonesLeader sequenceMaize seedlingsAcid sequenceGlycosylation sitesPrimary leavesFlower partsGenesLaser scanning microscopyRetention of proteinsReproductive organsNew member
1992
The Core Protein of Epican, a Heparan Sulfate Proteoglycan on Keratinocytes, Is an Alternative Form of CD44
Kugelman L, Ganguly S, Haggerty J, Weissman S, Milstone L. The Core Protein of Epican, a Heparan Sulfate Proteoglycan on Keratinocytes, Is an Alternative Form of CD44. Journal Of Investigative Dermatology 1992, 99: 887-891. PMID: 1281868, DOI: 10.1111/1523-1747.ep12614896.Peer-Reviewed Original ResearchConceptsHeparan sulfate proteoglycanCore proteinForm of CD44Human keratinocyte cDNA libraryDeduced protein sequenceAmino acid domainProximal extracellular domainKeratinocyte cDNA librarySulfate proteoglycanAcid domainCDNA libraryProtein sequencesGlycosylation sitesProteolysis siteExtracellular domainAdditional domainsAmino acidsProteinEpicanLeukocyte formCD44ProteoglycansDomainMonoclonal antibodiesKeratinocytesThe Core Protein of Epican, a Heparan Sulfate Proteoglycan on Keratinocytes, Is an Alternative Form of CD44
Kugelman L, Ganguly S, Haggerty J, Weissman S, Milstone L. The Core Protein of Epican, a Heparan Sulfate Proteoglycan on Keratinocytes, Is an Alternative Form of CD44. Journal Of Investigative Dermatology 1992, 99: 381-385. DOI: 10.1111/1523-1747.ep12616092.Peer-Reviewed Original ResearchHeparan sulfate proteoglycanCore proteinForm of CD44Human keratinocyte cDNA libraryDeduced protein sequenceAmino acid domainProximal extracellular domainKeratinocyte cDNA librarySulfate proteoglycanAcid domainCDNA libraryProtein sequencesGlycosylation sitesProteolysis siteExtracellular domainAdditional domainsAmmo acidsProteinEpicanLeukocyte formCD44ProteoglycansDomain
1990
A fusion-defective mutant of the vesicular stomatitis virus glycoprotein
Whitt M, Zagouras P, Crise B, Rose J. A fusion-defective mutant of the vesicular stomatitis virus glycoprotein. Journal Of Virology 1990, 64: 4907-4913. PMID: 2168975, PMCID: PMC247981, DOI: 10.1128/jvi.64.10.4907-4913.1990.Peer-Reviewed Original ResearchConceptsWild-type G proteinG proteinsMutant proteinsFusion activityMutant G proteinsFusion-defective mutantsAmino acids 117Vesicular stomatitis virus glycoproteinFormation of heterotrimersUncharged amino acidsTemperature-sensitive mutantNew glycosylation siteMutant glycoproteinsVesicular stomatitis virusGlycosylation sitesMembrane fusionRescue of virusVSV virionsExtracellular domainAmino acidsCell surfaceProteinVSV serotypesStomatitis virusMutants
1988
Cell-surface expression of a membrane-anchored form of the human chorionic gonadotropin alpha subunit.
Guan J, Cao H, Rose J. Cell-surface expression of a membrane-anchored form of the human chorionic gonadotropin alpha subunit. Journal Of Biological Chemistry 1988, 263: 5306-5313. PMID: 2451667, DOI: 10.1016/s0021-9258(18)60716-1.Peer-Reviewed Original ResearchMeSH KeywordsBiological Transport, ActiveCloning, MolecularDNAElectrophoresis, Polyacrylamide GelFluorescent Antibody TechniqueGene Expression RegulationGlycoprotein Hormones, alpha SubunitGlycoside HydrolasesGlycosylationHexosaminidasesHumansKineticsMannosyl-Glycoprotein Endo-beta-N-AcetylglucosaminidaseMembranesOligosaccharidesPituitary Hormones, AnteriorPlasmidsTunicamycinVesicular stomatitis Indiana virusViral Fusion ProteinsConceptsVesicular stomatitis virus glycoproteinAsparagine-linked glycansAnimal cellsAlpha subunitNovel cell surface proteinCarboxyl-terminal amino acidsGlycosylation inhibitor tunicamycinAbsence of glycosylationMembrane-anchored formCell surface proteinsSecond glycosylation siteHuman chorionic gonadotropin (hCG) alpha-subunitVirus glycoproteinEntire precursorCell surface expressionCytoplasmic domainGonadotropin alpha subunitHybrid proteinPlasma membraneGlycosylation sitesSecretory proteinsCellular membranesConformational changesCell surfaceAmino acidsInfluence of new glycosylation sites on expression of the vesicular stomatitis virus G protein at the plasma membrane.
Machamer C, Rose J. Influence of new glycosylation sites on expression of the vesicular stomatitis virus G protein at the plasma membrane. Journal Of Biological Chemistry 1988, 263: 5948-5954. PMID: 2833523, DOI: 10.1016/s0021-9258(18)60658-1.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceBinding SitesBiological TransportCell LineCell MembraneCloning, MolecularDNA, RecombinantFluorescent Antibody TechniqueGlycosylationImmunosorbent TechniquesIodine RadioisotopesLactoperoxidaseMembrane GlycoproteinsMolecular Sequence DataMutationOligosaccharidesTransfectionTunicamycinVesicular stomatitis Indiana virusViral Envelope ProteinsViral Matrix ProteinsConceptsVesicular stomatitis virus G proteinVirus G proteinG proteinsConsensus sitesIntracellular transportWild-type G proteinWild-type proteinOligonucleotide-directed mutagenesisNew consensus sitePlasma membrane glycoproteinsMutant proteinsNew glycosylation siteNew sitesAsparagine-linked oligosaccharidesPlasma membraneGlycosylation sitesMembrane glycoproteinsInhibition of transportProteinPolypeptide backboneNormal sitesIndirect roleOligosaccharidesExpressionSites
1987
Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus.
Kwon BS, Haq AK, Pomerantz SH, Halaban R. Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proceedings Of The National Academy Of Sciences Of The United States Of America 1987, 84: 7473-7477. PMID: 2823263, PMCID: PMC299318, DOI: 10.1073/pnas.84.21.7473.Peer-Reviewed Original ResearchConceptsCDNA clonesMelanocyte cDNA libraryRelated mRNA speciesHuman tyrosinaseAmino acid sequenceSouthern blot analysisStructural geneCDNA libraryNucleotide sequenceMRNA speciesAcid sequenceGlycosylation sitesCDNA insertDeletion mutationsCell typesAmino acidsCopper bindingBlot analysisClonesMalignant melanocytesLociSequenceTyrosinaseApproximate lengthKilobases
1985
A Single N-Linked Oligosaccharide at Either of the Two Normal Sites Is Sufficient for Transport of Vesicular Stomatitis Virus G Protein to the Cell Surface
Machamer C, Florkiewicz R, Rose J. A Single N-Linked Oligosaccharide at Either of the Two Normal Sites Is Sufficient for Transport of Vesicular Stomatitis Virus G Protein to the Cell Surface. Molecular And Cellular Biology 1985, 5: 3074-3083. DOI: 10.1128/mcb.5.11.3074-3083.1985.Peer-Reviewed Original ResearchG-proteinCell surface expressionTransport of vesicular stomatitis virus G proteinGlycosylation sitesCell surfaceNonglycosylated G proteinGolgi-like regionWild-type proteinAsparagine-linked glycansVesicular stomatitis virus G proteinSite-directed mutagenesisVesicular stomatitis virus glycoproteinIndirect immunofluorescence microscopyCloned cDNACoding sequenceIntracellular transportOligosaccharide processingSurface expressionTransfected CellsProteolytic breakdownExpression of G-proteinsImmunofluorescence microscopyGlycosylationVirus glycoproteinModified with palmitic acidA single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface.
Machamer C, Florkiewicz R, Rose J. A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface. Molecular And Cellular Biology 1985, 5: 3074-3083. PMID: 3018499, PMCID: PMC369121, DOI: 10.1128/mcb.5.11.3074.Peer-Reviewed Original ResearchConceptsCell surface expressionG proteinsGlycosylation sitesVesicular stomatitis virus G proteinCell surfaceWild-type proteinVesicular stomatitis virus glycoproteinRole of glycosylationSurface expressionSite-directed mutagenesisVirus G proteinAsparagine-linked glycansIndirect immunofluorescence microscopyIntracellular transportImmunofluorescence microscopyOligosaccharide processingProteinProteolytic breakdownVirus glycoproteinExpressionPalmitic acidCellsMutagenesisOligosaccharidesCDNAA Single N-Linked Oligosaccharide at Either of the Two Normal Sites Is Sufficient for Transport of Vesicular Stomatitis Virus G Protein to the Cell Surface
Machamer C, Florkiewicz R, Rose J. A Single N-Linked Oligosaccharide at Either of the Two Normal Sites Is Sufficient for Transport of Vesicular Stomatitis Virus G Protein to the Cell Surface. Molecular And Cellular Biology 1985, 5: 3074-3083. DOI: 10.1128/mcb.5.11.3074-3083.1985.Peer-Reviewed Original ResearchCell surface expressionG proteinsGlycosylation sitesVesicular stomatitis virus G proteinCell surfaceWild-type proteinVesicular stomatitis virus glycoproteinRole of glycosylationSurface expressionSite-directed mutagenesisVirus G proteinAsparagine-linked glycansIndirect immunofluorescence microscopyIntracellular transportImmunofluorescence microscopyOligosaccharide processingProteinProteolytic breakdownVirus glycoproteinExpressionPalmitic acidCellsMutagenesisOligosaccharidesCDNAGlycosylation allows cell-surface transport of an anchored secretory protein
Guan J, Machamer C, Rose J. Glycosylation allows cell-surface transport of an anchored secretory protein. Cell 1985, 42: 489-496. PMID: 3928168, DOI: 10.1016/0092-8674(85)90106-0.Peer-Reviewed Original ResearchConceptsCell surfaceProtein transportMutant proteinsCarboxy-terminal extensionCell surface transportVesicular stomatitis virus glycoproteinMembrane-anchored formSingle amino acidCytoplasmic domainHybrid geneGlycosylation sitesConsensus sequenceSecretory proteinsGolgi apparatusCellular membranesAmino acidsProteinRandom sitesGlycosylationVirus glycoproteinRat growth hormoneGrowth hormoneTransmembraneGenesSites
1983
Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus
Gallione C, Rose J. Nucleotide sequence of a cDNA clone encoding the entire glycoprotein from the New Jersey serotype of vesicular stomatitis virus. Journal Of Virology 1983, 46: 162-169. PMID: 6298453, PMCID: PMC255104, DOI: 10.1128/jvi.46.1.162-169.1983.Peer-Reviewed Original ResearchConceptsNew Jersey serotypeVesicular stomatitis virusCDNA clonesIndiana serotypeNucleotide sequenceTranslation termination codonVSV serotypesStomatitis virusTransmembrane domainSignal sequenceSerine residuesProtein sequencesTermination codonEsterification sitesGlycosylation sitesNoncoding nucleotidesGlycine residueShort homologiesAmino acidsNucleotidesMRNARabies virusClonesTerminusResidues
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply