2021
Evolutionary Insights into the Microneme-Secreted, Chitinase-Containing High-Molecular-Weight Protein Complexes Involved in Plasmodium Invasion of the Mosquito Midgut
Kaur H, Pacheco MA, Garber L, Escalante AA, Vinetz JM. Evolutionary Insights into the Microneme-Secreted, Chitinase-Containing High-Molecular-Weight Protein Complexes Involved in Plasmodium Invasion of the Mosquito Midgut. Infection And Immunity 2021, 90: e00314-21. PMID: 34606368, PMCID: PMC8788677, DOI: 10.1128/iai.00314-21.Peer-Reviewed Original ResearchConceptsPeritrophic matrixMosquito midgutNew genomic insightsWeight protein complexesHigh-resolution structural modelingDomain-related proteinEvolutionary insightsInvasion machineryGenomic insightsMicronemal proteinsProtein complexesThree-dimensional structureMosquito interactionsGenomic dataPlasmodium invasionProteolytic milieuMidgut epitheliumWeight complexesAdhesive proteinsOokinetesGeneral mechanismProteinChitinasesMidgutChitinase
2017
Pba3‐Pba4 Plays a Role in Preventing Non‐Productive Interactions Among the α Subunits of the Proteasome
Panfair D, Ramamurthy A, Hochstrasser M, Kusmierczyk A. Pba3‐Pba4 Plays a Role in Preventing Non‐Productive Interactions Among the α Subunits of the Proteasome. The FASEB Journal 2017, 31 DOI: 10.1096/fasebj.31.1_supplement.917.1.Peer-Reviewed Original ResearchProteasome assemblyDegradation of ubiquitin-tagged proteinsMultisubunit protease complexUbiquitin-tagged proteinsNon-productive interactionsEarly eventMolecular weight complexesAssembly chaperonesTagged proteinsSubunit additionRecombinant expressionProtease complexEscherichia coliDead-end speciesProteasomeWeight complexesSubunitRing complexCoexpressionIn vivoAssemblyCrosslinking strategyChaperoneA ringSpecies
2016
O-Glycosylation of a Secretory Granule Membrane Enzyme Is Essential for Its Endocytic Trafficking*
Vishwanatha KS, Bäck N, Lam TT, Mains RE, Eipper BA. O-Glycosylation of a Secretory Granule Membrane Enzyme Is Essential for Its Endocytic Trafficking*. Journal Of Biological Chemistry 2016, 291: 9835-9850. PMID: 26961877, PMCID: PMC4850319, DOI: 10.1074/jbc.m115.711838.Peer-Reviewed Original ResearchConceptsHigh molecular weight complexesPAM-1Molecular weight complexesEndocytic traffickingCytosolic domainBlue native PAGE analysisAtT-20 corticotrope tumor cellsWeight complexesCrucial post-translational modificationPost-translational modificationsO-glycosylation sitesPeptidylglycine αFurin-like convertasesNative PAGE analysisSoluble fragmentCorticotrope tumor cellsAlternative splicingEndocytic pathwayCatalytic domainEndocytic compartmentsGlycosylation sitesO-glycosylationMultivesicular bodiesMembrane enzymeEndoproteolytic cleavage
2015
A Survey of the Interactome of Kaposi's Sarcoma-Associated Herpesvirus ORF45 Revealed Its Binding to Viral ORF33 and Cellular USP7, Resulting in Stabilization of ORF33 That Is Required for Production of Progeny Viruses
Gillen J, Li W, Liang Q, Avey D, Wu J, Wu F, Myoung J, Zhu F. A Survey of the Interactome of Kaposi's Sarcoma-Associated Herpesvirus ORF45 Revealed Its Binding to Viral ORF33 and Cellular USP7, Resulting in Stabilization of ORF33 That Is Required for Production of Progeny Viruses. Journal Of Virology 2015, 89: 4918-4931. PMID: 25694600, PMCID: PMC4403494, DOI: 10.1128/jvi.02925-14.Peer-Reviewed Original ResearchConceptsUbiquitin-specific protease 7Kaposi's sarcoma-associated herpesvirusSarcoma-associated herpesvirusKSHV lytic replicationORF45 proteinKaposi's Sarcoma-Associated Herpesvirus ORF45Lytic replicationCarboxyl-terminal 19 amino acidsKSHV ORF45Copurified proteinsConsensus motifMultifunctional proteinKinase proteinInteractomeCarboxyl terminusKSHV genomeORF45Tegument proteinsWeight complexesProtein accumulationORF33Progeny virionsAmino acidsHuman cancersProtein
2007
Two Trypanosome-Specific Proteins Are Essential Factors for 5S rRNA Abundance and Ribosomal Assembly in Trypanosoma brucei▿
Hellman KM, Ciganda M, Brown SV, Li J, Ruyechan W, Williams N. Two Trypanosome-Specific Proteins Are Essential Factors for 5S rRNA Abundance and Ribosomal Assembly in Trypanosoma brucei▿. MSphere 2007, 6: 1766-1772. PMID: 17715362, PMCID: PMC2043393, DOI: 10.1128/ec.00119-07.Peer-Reviewed Original ResearchConceptsRNAi cellsRRNA levelsNovel nuclear RNATrypanosome-specific proteinsRNA interference studiesN-terminal regionRibosome biogenesisOverall protein synthesisRibosomal assemblyRibosome activityP37 proteinRRNA abundanceAncient familyNuclear RNARibosomal subunitTrypanosoma bruceiT. bruceiCell shapeGrowth arrestWeight complexesRRNAAcid differencesProtein p34Protein synthesisP34
2001
RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-26-nucleotide RNAs.
Djikeng A, Shi H, Tschudi C, Ullu E. RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-26-nucleotide RNAs. RNA 2001, 7: 1522-30. PMID: 11720282, PMCID: PMC1370195.Peer-Reviewed Original ResearchConceptsDouble-stranded RNARNA interferenceGene-specific double-stranded RNAHigh-speed pellet fractionStrand-specific probesSmall interfering RNAsTarget RNA degradationDsRNA resultsHousekeeping functionsTrypanosoma bruceiRNA degradationCellular RNAInterfering RNAsNorthern hybridizationWeight complexesSequence analysisHigh-speed pelletRNALong fragmentSiRNAsPellet fractionEnrichment strategyCloningSupernatant fractionFragments
2000
PRMT1 Is the Predominant Type I Protein Arginine Methyltransferase in Mammalian Cells*
Tang J, Frankel A, Cook R, Kim S, Paik W, Williams K, Clarke S, Herschman H. PRMT1 Is the Predominant Type I Protein Arginine Methyltransferase in Mammalian Cells*. Journal Of Biological Chemistry 2000, 275: 7723-7730. PMID: 10713084, DOI: 10.1074/jbc.275.11.7723.Peer-Reviewed Original ResearchConceptsProtein arginine methyltransferase activityArginine methyltransferase activityMurine tissue extractsMammalian cellsRat1 cellsMethyltransferase activityType I protein arginine methyltransferasesType I protein arginine methyltransferaseHeterogeneous nuclear ribonucleoprotein A1Protein arginine methyltransferasesProtein arginine methyltransferaseFDH activityHigh molecular weight complexesDomain fusion proteinMolecular weight complexesMethyl donor substrateDimethylarginine residuesArginine methyltransferasesArginine methyltransferaseEucaryotic proteinsPRMT1 activityDehydrogenase proteinFusion proteinEnzyme activity presentWeight complexes
1996
[16] Purification of yeast RNA polymerase II holoenzymes
Koleske AJ, Chao DM, Young RA. [16] Purification of yeast RNA polymerase II holoenzymes. Methods In Enzymology 1996, 273: 176-184. PMID: 8791611, DOI: 10.1016/s0076-6879(96)73018-5.Peer-Reviewed Original ResearchConceptsRNA polymerase II holoenzymeRNA polymerase IIPolymerase IIYeast RNA polymerase II holoenzymeGeneral transcription factors TBPTranscription factors TBPHigh molecular weight complexesMolecular weight complexesTranscriptional regulationTranscription initiationYeast SaccharomycesTranscription studiesHoloenzymeHoloenzyme preparationWeight complexesTranscriptionLow salt bufferExciting cluesLarge formSalt concentrationTFIIBTFIIEAssaysSaccharomycesPurification
1995
rag-1 and rag-2 Are Components of a High-Molecular-Weight Complex, and Association of rag-2 with This Complex Is rag-1 Dependent
Leu T, Schatz D. rag-1 and rag-2 Are Components of a High-Molecular-Weight Complex, and Association of rag-2 with This Complex Is rag-1 Dependent. Molecular And Cellular Biology 1995, 15: 5657-5670. PMID: 7565717, PMCID: PMC230816, DOI: 10.1128/mcb.15.10.5657.Peer-Reviewed Original ResearchConceptsRAG-2RAG-1RAG-2 proteinRAG proteinsSubcellular localizationBiological functionsIntracellular complexesWeight complexesLymphocyte developmentSized complexesBiochemical propertiesProteinCell linesSame complexHigh salt concentrationsSynergistic functionImmunological reagentsNuclear structureComplexesCoimmunoprecipitationHigh-MolecularMore moleculesHigh levelsRecombinationSalt concentration
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply