2023
Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin beta receptor signaling
Feng X, Sun R, Lee M, Chen X, Guo S, Geng H, Müschen M, Choi J, Pereira J. Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin beta receptor signaling. ELife 2023, 12: e83533. PMID: 36912771, PMCID: PMC10042536, DOI: 10.7554/elife.83533.Peer-Reviewed Original ResearchConceptsMesenchymal stem cellsLymphotoxin beta receptorLeukemic cellsBeta receptorsLeukemic cell growthBone marrow microenvironmentStem cellsTransplant recipientsAML cellsMyeloblastic leukemiaMouse modelBone marrowLeukemia growthLymphotoxin α1β2Marrow microenvironmentPharmacological disruptionLymphopoiesisReceptorsHematopoietic outputMolecular mechanismsErythropoiesisDNA damage response pathwayCell growthCellsPhysiological mechanisms
2022
An In Vivo Model for Elucidating the Role of an Erythroid-Specific Isoform of Nuclear Export Protein Exportin 7 (Xpo7) in Murine Erythropoiesis
Modepalli S, Martinez-Morilla S, Venkatesan S, Fasano J, Paulsen K, Görlich D, Hattangadi S, Kupfer G. An In Vivo Model for Elucidating the Role of an Erythroid-Specific Isoform of Nuclear Export Protein Exportin 7 (Xpo7) in Murine Erythropoiesis. Experimental Hematology 2022, 114: 22-32. PMID: 35973480, PMCID: PMC10165728, DOI: 10.1016/j.exphem.2022.08.001.Peer-Reviewed Original ResearchConceptsErythroid-specific isoformStress erythropoiesisNuclear condensationPenetrant embryonic lethalityStress response factorsGene-targeted mouse modelsEmbryonic lethalityTerminal erythropoiesisDefinitive erythropoiesisExportin-7Cell divisionSteady-state erythropoiesisUbiquitous isoformErythroid isoformComplete knockdownMurine erythropoiesisSpecific isoformsXPO7Response factorIsoformsFunctional differencesExon 4Fetal liverErythropoiesisExpression
2021
EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis
Hidalgo D, Bejder J, Pop R, Gellatly K, Hwang Y, Maxwell Scalf S, Eastman AE, Chen JJ, Zhu LJ, Heuberger JAAC, Guo S, Koury MJ, Nordsborg NB, Socolovsky M. EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis. Nature Communications 2021, 12: 7334. PMID: 34921133, PMCID: PMC8683474, DOI: 10.1038/s41467-021-27562-4.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnimalsAntigens, CDbcl-X ProteinCD4 AntigensCell CycleCell DifferentiationCell NucleusCell SizeCell SurvivalCyclin-Dependent Kinase Inhibitor p27Embryo, MammalianErythroblastsErythrocytesErythropoiesisErythropoietinFemaleFetusHealthy VolunteersHumansIronLiverMaleMice, Inbred C57BLModels, BiologicalProtein Serine-Threonine KinasesReceptors, ErythropoietinReceptors, TransferrinReticulocytesSignal TransductionConceptsCell size regulationCell sizeSequential cell divisionsEpoR functionErythroblast survivalMouse erythroblastsCell divisionSize regulationHuman erythropoiesisErythropoietin receptorCell cycleEpoRHypoxic stressRed cell sizeHigh erythropoietinLarger red cellsWild-type miceCyclingErythroblastsRegulationHigher EPO levelsMiceRed cellsSurvivalErythropoiesisCross-platform transcriptomic profiling of the response to recombinant human erythropoietin
Wang G, Kitaoka T, Crawford A, Mao Q, Hesketh A, Guppy FM, Ash GI, Liu J, Gerstein MB, Pitsiladis YP. Cross-platform transcriptomic profiling of the response to recombinant human erythropoietin. Scientific Reports 2021, 11: 21705. PMID: 34737331, PMCID: PMC8568984, DOI: 10.1038/s41598-021-00608-9.Peer-Reviewed Original ResearchConceptsRNA-seqDifferential gene expressionPathway enrichment analysisRNA biologyTranscriptomic profilingTarget genesEnrichment analysisGene expressionEPO biologyMicroarray platformGene correlateCross-platform comparisonGenesBiologyImmune regulationHuman erythropoietinTissue protectionProfilingRegulationErythropoietinRecombinant human erythropoietinExpressionImportant toolErythropoiesisOxygen transport
2019
Identification and transcriptome analysis of erythroblastic island macrophages
Li W, Wang Y, Zhao H, Zhang H, Xu Y, Wang S, Guo X, Huang Y, Zhang S, Han Y, Wu X, Rice CM, Huang G, Gallagher PG, Mendelson A, Yazdanbakhsh K, Liu J, Chen L, An X. Identification and transcriptome analysis of erythroblastic island macrophages. Blood 2019, 134: 480-491. PMID: 31101625, PMCID: PMC6676133, DOI: 10.1182/blood.2019000430.Peer-Reviewed Original ResearchConceptsErythroblastic islandsEBI macrophagesErythroid cellsErythroblastic island macrophagesGene expression profilesTranscriptome analysisNonerythroid cellsMacrophage functionHematopoietic nicheExpression profilesSpecialized functionsCentral macrophageKnockin mouse modelFlow cytometry analysisEpoRKey moleculesIron recyclingBone marrowCytometry analysisFetal liverNicheEfficient erythropoiesisErythropoiesisIron sourceImportant resource
2016
Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis
Liddicoat BJ, Hartner JC, Piskol R, Ramaswami G, Chalk AM, Kingsley PD, Sankaran VG, Wall M, Purton LE, Seeburg PH, Palis J, Orkin SH, Lu J, Li JB, Walkley CR. Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis. Experimental Hematology 2016, 44: 947-963. PMID: 27373493, PMCID: PMC5035604, DOI: 10.1016/j.exphem.2016.06.250.Peer-Reviewed Original ResearchMeSH KeywordsAdenosineAdenosine DeaminaseAnimalsCluster AnalysisErythrocyte IndicesErythroid CellsErythropoiesisGene ExpressionGene Expression ProfilingGene Expression Regulation, DevelopmentalGene Knockout TechniquesGranulocytesHematopoietic Stem Cell TransplantationInosineInterferonsMiceMicroRNAsMyelopoiesisOrgan SpecificityPhenotypeReceptors, InterferonRetroelementsRNA EditingRNA-Binding ProteinsSignal TransductionTranscription, GeneticConceptsRNA editingErythroid cellsNormal erythropoiesisHematopoietic stem/progenitorsHematopoietic cell typesInnate immune signalingStem/progenitorsEditing eventsErythroid-specific transcriptsEssential functionsImmune signalingMurine erythropoiesisADAR1Cell deathCell typesMyeloid-restricted deletionEditingRNAMicroRNA levelsErythropoiesisCellsProfound activationTranscriptsSignalingAdenosine
2015
Human and murine erythropoiesis
An X, Schulz VP, Mohandas N, Gallagher PG. Human and murine erythropoiesis. Current Opinion In Hematology 2015, 22: 206-211. PMID: 25719574, PMCID: PMC4401149, DOI: 10.1097/moh.0000000000000134.Peer-Reviewed Original ResearchConceptsTerminal erythroid differentiationMurine erythropoiesisPerturbed erythropoiesisErythroid differentiationStage-specific programsAlternative splicing programGenome-wide analysisPoor sequence conservationSpecies-specific similaritiesGene expression dataGood model systemSplicing programGenomic methodologiesSequence conservationTranscriptome analysisHuman erythropoiesisExpression dataDifferentiation stageRecent insightsModel systemErythropoiesisDifferentiationFundamental mechanismsCritical insightsDifferent mechanisms
2014
Long noncoding RNAs in erythropoiesis
Gallagher PG. Long noncoding RNAs in erythropoiesis. Blood 2014, 123: 465-466. PMID: 24458276, DOI: 10.1182/blood-2013-12-538306.Peer-Reviewed Original Research
2010
SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis
Yu L, Ji W, Zhang H, Renda MJ, He Y, Lin S, Cheng EC, Chen H, Krause DS, Min W. SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis. Journal Of Experimental Medicine 2010, 207: 1183-1195. PMID: 20457756, PMCID: PMC2882842, DOI: 10.1084/jem.20092215.Peer-Reviewed Original ResearchConceptsSmall ubiquitin-like modifier (SUMO) modificationImportant regulatory mechanismEmbryonic day 13.5Down-regulation correlatesFetal liverCre-loxP systemEmbryonic lethalityProtein functionDefinitive erythropoiesisGene promoterDNA bindingRegulatory mechanismsGene expressionGATA1SENP1Fetal liver cellsProtein analysisDay 13.5Global deletionProteinSubsequent erythropoiesisKnockout miceErythropoiesisLiver cellsDeSUMOylation
2002
Interaction between FOG-1 and the Corepressor C-Terminal Binding Protein Is Dispensable for Normal Erythropoiesis In Vivo
Katz SG, Cantor AB, Orkin SH. Interaction between FOG-1 and the Corepressor C-Terminal Binding Protein Is Dispensable for Normal Erythropoiesis In Vivo. Molecular And Cellular Biology 2002, 22: 3121-3128. PMID: 11940669, PMCID: PMC133767, DOI: 10.1128/mcb.22.9.3121-3128.2002.Peer-Reviewed Original ResearchMeSH KeywordsAlcohol OxidoreductasesAmino Acid MotifsAmino Acid SequenceAnimalsBinding SitesBlotting, WesternCarrier ProteinsCell LineConserved SequenceCOS CellsDNA-Binding ProteinsErythrocytesErythropoiesisErythropoietinGenetic VectorsHematocritMiceMice, KnockoutMutationNuclear ProteinsPhenylhydrazinesPhosphoproteinsPrecipitin TestsProtein BindingRepressor ProteinsSequence Homology, Amino AcidTranscription FactorsTransgenesConceptsC-terminal binding proteinFOG-1Corepressor C-terminal binding proteinTranscription factor GATA-1Binding proteinCorepressor CtBPCtBP interactsErythroid developmentGATA-1Vivo functionCtBPMegakaryocytic lineagePeptide motifsPhysiological roleInteraction sitesNormal erythropoiesisErythropoietic stressCell linesStages of developmentProteinErythrocyte productionFamily membersWild-type miceErythropoiesisCoimmunoprecipitation
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply