2025
Cancer hotspot mutations rewire ERK2 specificity by selective exclusion of docking interactions
Robles J, Stiegler A, Boggon T, Turk B. Cancer hotspot mutations rewire ERK2 specificity by selective exclusion of docking interactions. Journal Of Biological Chemistry 2025, 301: 108348. PMID: 40015635, PMCID: PMC11982978, DOI: 10.1016/j.jbc.2025.108348.Peer-Reviewed Original ResearchShort linear motifsCancer hotspot mutationsLinear motifsERK substratesYeast two-hybrid libraryHotspot mutationsTwo-hybrid libraryCancer-associated mutantsDocking interactionsWild-type ERK2Cancer-associated mutationsDocking motifBinding sequenceKinase ERK2Co-crystal structureMutant formsERK2 mutantsDisordered regionsERK2MotifStructural rationalePeptide bindingMutationsWT kinasePeptide fragments
2022
SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP
Chau JE, Vish KJ, Boggon TJ, Stiegler AL. SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP. Nature Communications 2022, 13: 4788. PMID: 35970859, PMCID: PMC9378701, DOI: 10.1038/s41467-022-32541-4.Peer-Reviewed Original ResearchConceptsRhoGAP activitySH3 domainCatalytic arginine fingerIntrinsic GTPase activityRho family GTPasesLiver cancer 1GAP proteinsRhoGAP proteinArginine fingerCo-crystal structureRas GTPasesGAP activityRho proteinsCellular processesGTPase activityMolecular basisKey regulatorTumor suppressorP120RasGAPCell migrationProteinGTPasesRhoGAPCancer 1Binding sites
2019
Crystal structures of p120RasGAP N-terminal SH2 domain in its apo form and in complex with a p190RhoGAP phosphotyrosine peptide
Chehayeb R, Stiegler AL, Boggon TJ. Crystal structures of p120RasGAP N-terminal SH2 domain in its apo form and in complex with a p190RhoGAP phosphotyrosine peptide. PLOS ONE 2019, 14: e0226113. PMID: 31891593, PMCID: PMC6938330, DOI: 10.1371/journal.pone.0226113.Peer-Reviewed Original ResearchConceptsN-terminal SH2 domainSH2 domainPhosphotyrosine peptidesNative gel shiftSite-directed mutagenesisGAP proteinsCo-crystal structurePhosphorylated tyrosineRas pathwayUnliganded formApo formCross-talk occursGel shiftP120RasGAPIsothermal titration calorimetryP190RhoGAPCell growthSpecific conformationCell proliferationProteinX-ray crystal structureTitration calorimetryDisease pathogenesisCrystal structureRho
2015
Structure of the ABL2/ARG kinase in complex with dasatinib
Ha BH, Simpson MA, Koleske AJ, Boggon TJ. Structure of the ABL2/ARG kinase in complex with dasatinib. Acta Crystallographica Section F: Structural Biology Communications 2015, 71: 443-8. PMID: 25849507, PMCID: PMC4388181, DOI: 10.1107/s2053230x15004793.Peer-Reviewed Original ResearchConceptsT-cell acute lymphoblastic leukemiaActivation loop tyrosinesABL kinase activationGlycine-rich P-loopCell morphogenesisCo-crystal structureBreakpoint cluster regionCellular functionsArg genesCatalytic domainAbl familyArg kinaseP-loopKinase activationBiological roleOpen conformationTyrosine kinaseAbl kinaseKinaseGenesKinase inhibitorsABL1 geneArgCluster regionTyrosine kinase inhibitors
2013
Substrate and Inhibitor Specificity of the Type II p21-Activated Kinase, PAK6
Gao J, Ha BH, Lou HJ, Morse EM, Zhang R, Calderwood DA, Turk BE, Boggon TJ. Substrate and Inhibitor Specificity of the Type II p21-Activated Kinase, PAK6. PLOS ONE 2013, 8: e77818. PMID: 24204982, PMCID: PMC3810134, DOI: 10.1371/journal.pone.0077818.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceCatalytic DomainCrystallizationCrystallography, X-RayHEK293 CellsHumansIndolesModels, MolecularMolecular Sequence Datap21-Activated KinasesPeptide FragmentsPhosphorylationProtein ConformationPyrazolesPyrrolesSequence Homology, Amino AcidSignal TransductionSubstrate SpecificitySunitinibConceptsP21-activated kinaseCo-crystal structureRho family small GTPasesPeptide substrate specificityATP-competitive inhibitorsStructure-function relationshipsSmall GTPasesPAK familyCatalytic domainMelanoma-associated mutationsSubstrate specificityInhibitor specificityPAK6Receptor signalingPF-3758309Important effectors
2012
Phosphoglycerate Mutase 1 Promotes Leukemia Metabolism by Coordinating Glycolysis and Biosynthesis, and Represnts a Therapuetic Target in Leukemia Treatment
Hitosugi T, Zhou L, Fan J, Arellano M, Khoury H, Lee B, Boggon T, Kang S, He C, Chen J. Phosphoglycerate Mutase 1 Promotes Leukemia Metabolism by Coordinating Glycolysis and Biosynthesis, and Represnts a Therapuetic Target in Leukemia Treatment. Blood 2012, 120: 860. DOI: 10.1182/blood.v120.21.860.860.Peer-Reviewed Original ResearchPhosphoglycerate mutase 1Pentose phosphate pathwayHuman leukemia cell linesCell proliferationAnabolic biosynthesisCell metabolismLeukemia cell linesOxidative pentose phosphate pathwayPrimary leukemia cellsLeukemia cellsCancer cellsCell linesGlycolytic enzyme phosphoglycerate mutase 1PGAM1 inhibitorsSmall molecule inhibitorsCo-crystal structureXenograft nude miceInhibits cell proliferationLeukemia cell metabolismBiosynthesis pathwayEnzyme activity levelsHuman leukemia cellsShRNA resultsLoss of TP53Phosphate pathwayStructural Basis for Paxillin Binding and Focal Adhesion Targeting of β-Parvin*
Stiegler AL, Draheim KM, Li X, Chayen NE, Calderwood DA, Boggon TJ. Structural Basis for Paxillin Binding and Focal Adhesion Targeting of β-Parvin*. Journal Of Biological Chemistry 2012, 287: 32566-32577. PMID: 22869380, PMCID: PMC3463362, DOI: 10.1074/jbc.m112.367342.Peer-Reviewed Original ResearchConceptsΒ-parvinFocal adhesionsPaxillin bindingΑ-parvinFocal adhesion targetingN-terminal α-helixPaxillin LD1 motifCalponin homology domainFirst molecular detailsHigh sequence similarityCytoplasmic adaptor proteinIntegrin-linked kinasePaxillin LD1Co-crystal structureLD4 motifSignificant conformational flexibilityHomology domainAdaptor proteinCellular functionsSequence similarityRepeat motifsProper localizationMolecular detailsPaxillinStructural basis
2010
Discovery of Novel Fibroblast Growth Factor Receptor 1 Kinase Inhibitors by Structure-Based Virtual Screening
Ravindranathan KP, Mandiyan V, Ekkati AR, Bae JH, Schlessinger J, Jorgensen WL. Discovery of Novel Fibroblast Growth Factor Receptor 1 Kinase Inhibitors by Structure-Based Virtual Screening. Journal Of Medicinal Chemistry 2010, 53: 1662-1672. PMID: 20121196, PMCID: PMC2842983, DOI: 10.1021/jm901386e.Peer-Reviewed Original ResearchConceptsFibroblast growth factorCo-crystal structureKinase structureFGFR1 kinaseSearch of inhibitorsEmbryonic developmentProtein structureAlternative conformationsCell proliferationStructural motifsKinase inhibitorsGrowth factorNew structural motifDiverse compoundsVirtual screeningFGFR1InhibitorsDockingWound healingThienopyrimidinone derivativesImportant roleConformationKinaseProteinMotif
2009
Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization
Crawford JM, Korman TP, Labonte JW, Vagstad AL, Hill EA, Kamari-Bidkorpeh O, Tsai SC, Townsend CA. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization. Nature 2009, 461: 1139-1143. PMID: 19847268, PMCID: PMC2872118, DOI: 10.1038/nature08475.Peer-Reviewed Original ResearchConceptsProduct templateX-ray crystal structurePt domainsIntramolecular aldol cyclizationCo-crystal structureIterative polyketide synthaseBicyclic compoundsPolyketide cyclizationNatural productsCrystal structureAldol cyclizationDiverse structuresBiological activityBiosynthetic reactionsCyclizationPolyketide synthaseAflatoxin B1Structural basisStructureIntermediatesCompoundsReactionPotent hepatocarcinogen aflatoxin B1TemplateHepatocarcinogen aflatoxin B1
2006
A Molecular Tunnel Required for Cooperation of an Asparaginase and a Glu‐tRNAGln Kinase in Gln‐tRNA Formation
Sheppard K, Feng L, Oshikane H, Nakamura Y, Fukai S, Nureki O, Söll D. A Molecular Tunnel Required for Cooperation of an Asparaginase and a Glu‐tRNAGln Kinase in Gln‐tRNA Formation. The FASEB Journal 2006, 20: a503-a503. DOI: 10.1096/fasebj.20.4.a503-a.Peer-Reviewed Original ResearchGlu-tRNAGlnMolecular tunnelMost prokaryotesCo-crystal structurePresence of ATPGln-tRNAGlnSequence similarityEvolutionary linkHeterodimeric enzymeStructural insightsGatDEGatDEnzyme showEnzymatic analysisKinaseAmide donorCrystal structureActive siteATPGlnGluProkaryotesArchaeaTransamidationTight coupling
2005
Jak3 Kinase Domain Crystal Structures and Implications for Jak-Specific Drug Design.
Boggon T. Jak3 Kinase Domain Crystal Structures and Implications for Jak-Specific Drug Design. Blood 2005, 106: 69. DOI: 10.1182/blood.v106.11.69.69.Peer-Reviewed Original ResearchJAK3 kinase domainKinase domainDomain crystal structureResolution co-crystal structureJAK kinase family membersTyrosine kinaseLatent transcription factorsNon-receptor tyrosine kinaseActivation of transcriptionReceptor cytoplasmic tailKinase family membersRapid tyrosine phosphorylationThree-dimensional structural dataJAK-specific inhibitorDrug designTyrosine kinase activityFurther crystal structuresAutoinhibited conformationCo-crystal structureJAK activityConformational plasticityCytoplasmic tailTranscription factorsTranscription (STAT) proteinsGrowth factor receptorCrystal Structures of Proto-oncogene Kinase Pim1: A Target of Aberrant Somatic Hypermutations in Diffuse Large Cell Lymphoma
Kumar A, Mandiyan V, Suzuki Y, Zhang C, Rice J, Tsai J, Artis D, Ibrahim P, Bremer R. Crystal Structures of Proto-oncogene Kinase Pim1: A Target of Aberrant Somatic Hypermutations in Diffuse Large Cell Lymphoma. Journal Of Molecular Biology 2005, 348: 183-193. PMID: 15808862, DOI: 10.1016/j.jmb.2005.02.039.Peer-Reviewed Original ResearchMeSH KeywordsAdenylyl ImidodiphosphateAmino Acid SequenceApoproteinsCrystallography, X-RayHumansLymphoma, Large B-Cell, DiffuseModels, MolecularMolecular Sequence DataMutationProtein BindingProtein ConformationProtein Serine-Threonine KinasesProto-Oncogene MasProto-Oncogene ProteinsProto-Oncogene Proteins c-pim-1Sequence AlignmentConceptsKinase activitySerine/threonine kinaseAberrant somatic hypermutationSomatic hypermutationKinase inhibitor scaffoldN-terminal lobePim1 mutantsTypical kinasesCo-crystal structureThreonine kinaseProtein kinaseBackbone hydrogen bondsKinase PIM1Apo formBiological functionsProline residuesPIM1 inhibitorsNovel chemical classUnique structural featuresLow molecular massInhibitor scaffoldsCell survivalMolecular massPosition 123PIM1
2004
A Glutamine Switch Mechanism for Nucleotide Selectivity by Phosphodiesterases
Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, Bollag G. A Glutamine Switch Mechanism for Nucleotide Selectivity by Phosphodiesterases. Molecular Cell 2004, 15: 279-286. PMID: 15260978, DOI: 10.1016/j.molcel.2004.07.005.Peer-Reviewed Original ResearchMeSH Keywords3',5'-Cyclic-AMP Phosphodiesterases3',5'-Cyclic-GMP PhosphodiesterasesCatalytic DomainCrystallography, X-RayCyclic AMPCyclic GMPCyclic Nucleotide Phosphodiesterases, Type 3Cyclic Nucleotide Phosphodiesterases, Type 4Cyclic Nucleotide Phosphodiesterases, Type 5GlutamineHumansModels, MolecularProtein ConformationConceptsNucleotide selectivityKey specificity determinantKey histidine residuesFamily of enzymesHigh-resolution co-crystal structuresCo-crystal structureNew PDE inhibitorsGlutamine switchInvariant glutamineSpecificity determinantsTypes of phosphodiesterasesGlutamine functionsGlutamine residuesHistidine residuesSwitch mechanismStructural understandingPhosphodiesterasesCyclic nucleotidesResiduesCritical rolePurine moietyCGMPCAMPPDE inhibitorsNucleotides
1996
Structure of Taq polymerase with DNA at the polymerase active site
Eom S, Wang J, Steitz T. Structure of Taq polymerase with DNA at the polymerase active site. Nature 1996, 382: 278-281. PMID: 8717047, DOI: 10.1038/382278a0.Peer-Reviewed Original ResearchConceptsDuplex DNADNA polymeraseEnded duplex DNAKlenow fragmentBlunt-end terminiActive-site cleftEscherichia coli DNA polymerase IProtein side chainsDNA polymerase ICo-crystal structurePolymerase active siteTaq polymeraseWide minor groovePol ICommon binding sitePolymerase IPolymerase domainExonuclease domainPolymerase cleftThermus aquaticusPolymeraseDNAPolymerase siteMinor grooveExonuclease site
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply