2021
Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts
Cho J, Kim S, Lee H, Rah W, Cho HC, Kim NK, Bae S, Shin DH, Lee MG, Park IH, Tanaka Y, Shin E, Yi H, Han JW, Hwang PTJ, Jun HW, Park HJ, Cho K, Lee SW, Jung JK, Levit RD, Sussman MA, Harvey RP, Yoon YS. Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts. Nature Biomedical Engineering 2021, 5: 880-896. PMID: 34426676, PMCID: PMC8809198, DOI: 10.1038/s41551-021-00783-0.Peer-Reviewed Original ResearchConceptsDirect reprogrammingMouse tail-tip fibroblastsBone morphogenetic protein 4Smooth muscle cellsTail-tip fibroblastsMuscle cellsSomatic cellsEndothelial cellsReprogrammingCell typesTissue-like structuresMouse fibroblastsProtein 4Gap junctionsCardiovascular tissuesVessel formationDisease modellingDrug discoveryImmature characteristicsFibroblastsCellsMouse heartsCardiomyocytesTissueHost cardiomyocytes
2020
Pathophysiology of Portal Hypertension
Iwakiri Y, Groszmann R. Pathophysiology of Portal Hypertension. 2020, 659-669. DOI: 10.1002/9781119436812.ch51.Peer-Reviewed Original ResearchPortal hypertensionGastroesophageal variceal hemorrhageHyperdynamic circulatory syndromeIntrahepatic portal hypertensionNew blood vessel formationPre-existing vascular bedExtrahepatic circulationVariceal hemorrhageCirculatory syndromeLiver cirrhosisLethal complicationVascular toneVascular bedHypertensionFrequent causeCell-specific modulationPlatelet activationBlood vessel formationOrgans/tissuesVasoconstrictor moleculesCirrhosisTherapeutic purposesVessel formationPathophysiologySubsequent development
2019
Rudhira/BCAS3 couples microtubules and intermediate filaments to promote cell migration for angiogenic remodeling
Joshi D, Inamdar M. Rudhira/BCAS3 couples microtubules and intermediate filaments to promote cell migration for angiogenic remodeling. Molecular Biology Of The Cell 2019, 30: 1437-1450. PMID: 30995157, PMCID: PMC6724693, DOI: 10.1091/mbc.e18-08-0484.Peer-Reviewed Original ResearchConceptsCell migrationCytoskeleton organizationMT stabilityIntermediate filamentsEC migrationCytoskeletal protein essentialMT-IFVimentin intermediate filamentsFocal adhesionsEndothelial cell migrationMouse developmentProtein essentialRudhiraAssign functionCytoskeleton modulationDynamic remodelingBlood vessel formationAngiogenic sproutingSprouting angiogenesisAngiogenic remodelingMicrotubulesEssential roleVessel formationSequence 3Migration
2017
Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification
Fang JS, Coon BG, Gillis N, Chen Z, Qiu J, Chittenden TW, Burt JM, Schwartz MA, Hirschi KK. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nature Communications 2017, 8: 2149. PMID: 29247167, PMCID: PMC5732288, DOI: 10.1038/s41467-017-01742-7.Peer-Reviewed Original ResearchConceptsEndothelial cell cycle arrestArterial gene expressionCell cycle arrestArterial specificationGene expressionCycle arrestArterial-venous specificationCell cycle inhibitor CDKN1BEndothelial cell cycleCell cycle inhibitionEmbryonic developmentBlood vessel formationP27 axisFunctional vascular networkCell cycleGrowth controlSpecialized phenotypeFluid shear stressCycle inhibitionVessel formationGrowth inhibitionTissue repairMechanochemical pathwayEndothelial cellsVascular regenerationEnhanced Therapeutic and Long-Term Dynamic Vascularization Effects of Human Pluripotent Stem Cell–Derived Endothelial Cells Encapsulated in a Nanomatrix Gel
Lee SJ, Sohn YD, Andukuri A, Kim S, Byun J, Han JW, Park IH, Jun HW, Yoon YS. Enhanced Therapeutic and Long-Term Dynamic Vascularization Effects of Human Pluripotent Stem Cell–Derived Endothelial Cells Encapsulated in a Nanomatrix Gel. Circulation 2017, 136: 1939-1954. PMID: 28972000, PMCID: PMC5685906, DOI: 10.1161/circulationaha.116.026329.Peer-Reviewed Original ResearchConceptsCell survivalHPSC-ECsHuman pluripotent stem cell-derived endothelial cellsEndothelial lineage differentiationGlycogen synthase kinase-3β inhibitorHuman pluripotent stem cellsStem cell-derived endothelial cellsGrowth factorDifferentiation of hPSCsLonger cell survivalEndothelial cellsCell-derived endothelial cellsVessel formationPluripotent stem cell-derived endothelial cellsBetter perfusion recoveryPluripotent stem cellsNanomatrix gelLong-term cell survivalMesodermal lineagesLineage differentiationHuman umbilical vein endothelial cellsUmbilical vein endothelial cellsDifferentiation systemFibroblast growth factorBasic fibroblast growth factor
2016
Direct Reprogramming of Human Dermal Fibroblasts Into Endothelial Cells Using ER71/ETV2
Lee S, Park C, Han JW, Kim JY, Cho K, Kim EJ, Kim S, Lee SJ, Oh SY, Tanaka Y, Park IH, An HJ, Shin CM, Sharma S, Yoon YS. Direct Reprogramming of Human Dermal Fibroblasts Into Endothelial Cells Using ER71/ETV2. Circulation Research 2016, 120: 848-861. PMID: 28003219, PMCID: PMC5336520, DOI: 10.1161/circresaha.116.309833.Peer-Reviewed Original ResearchConceptsEndothelial cellsPostnatal cellsCell therapyDermal fibroblastsMature endothelial cellsNew vessel formationEndothelial featuresHuman endothelial cellsHindlimb ischemiaIschemic hindlimbPathophysiological investigationsEndothelial transcription factorImmature phenotypeDay 7Therapeutic potentialVascular incorporationProangiogenic effectsMature phenotypeEndothelial characteristicsIschemiaVessel formationHuman dermal fibroblastsTranscription factorsTherapyDisease investigationISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction
Bartulos O, Zhuang ZW, Huang Y, Mikush N, Suh C, Bregasi A, Wang L, Chang W, Krause DS, Young LH, Pober JS, Qyang Y. ISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction. JCI Insight 2016, 1: e80920. PMID: 27525311, PMCID: PMC4982472, DOI: 10.1172/jci.insight.80920.Peer-Reviewed Original ResearchMyocardial infarctionControl animalsCardiovascular progenitor cellsProgenitor cellsVentricular contractile functionCardiac repair strategiesNew blood vesselsInfarct areaLineage-tracing studiesContractile functionCardiac repairBlood vessel formationMyocardial regenerationEndothelial cellsHeart tissueBlood vesselsMurine heartInfarctionVessel formationInjuryMiceDelivery approachCardiomyocytesHeartCellsStudying Vascular Angiogenesis and Senescence in Zebrafish Embryos
Ristori E, Donnini S, Ziche M. Studying Vascular Angiogenesis and Senescence in Zebrafish Embryos. Methods In Molecular Biology 2016, 1430: 387-400. PMID: 27172969, DOI: 10.1007/978-1-4939-3628-1_27.Peer-Reviewed Original ResearchConceptsZebrafish embryosFluorescent transgenic linesCyclin-dependent kinase inhibitor p21 expressionVessel formationTransgenic linesSenescence defectsZebrafish modelPhosphatase activityAlkaline phosphatase activityEmbryosSenescenceExcellent animal modelExcellent disease modelZebrafishP21 expressionBrain degenerative changesNeurodegenerative diseasesVascular angiogenesisVascular senescenceΒ-galactosidaseOptical translucencyPeptide treatmentAmyloid β-peptideAngiogenesisDisease modelsMembrane‐mediated regulation of vascular identity
Hashimoto T, Tsuneki M, Foster TR, Santana JM, Bai H, Wang M, Hu H, Hanisch JJ, Dardik A. Membrane‐mediated regulation of vascular identity. Birth Defects Research Part C Embryo Today Reviews 2016, 108: 65-84. PMID: 26992081, PMCID: PMC5310768, DOI: 10.1002/bdrc.21123.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsOrgan developmentVascular identityMembrane-associated ligandsSignal transduction pathwaysNormal organ developmentMembrane-associated moleculesEph-ephrin familyEnvironmental signalsTransduction pathwaysProper formationAberrant signalingCellular responsesDifferent cell populationsEph receptorsEphrin proteinsVessel identityElaborate coordinationSignalingVessel formationCell populationsEphDiverse pathologiesVital functionsEphrinVascular physiology
2014
Emergence of Endothelial Cells During Vascular Development
Eichmann A, Pardanaud L. Emergence of Endothelial Cells During Vascular Development. 2014, 3-23. DOI: 10.1007/978-2-8178-0466-8_1.Peer-Reviewed Original Research
2013
Transmembrane protein ESDN promotes endothelial VEGF signaling and regulates angiogenesis
Nie L, Guo X, Esmailzadeh L, Zhang J, Asadi A, Collinge M, Li X, Kim JD, Woolls M, Jin SW, Dubrac A, Eichmann A, Simons M, Bender JR, Sadeghi MM. Transmembrane protein ESDN promotes endothelial VEGF signaling and regulates angiogenesis. Journal Of Clinical Investigation 2013, 123: 5082-5097. PMID: 24177422, PMCID: PMC3859420, DOI: 10.1172/jci67752.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDBlood VesselsCadherinsCells, CulturedEar, ExternalEndothelium, VascularHindlimbHuman Umbilical Vein Endothelial CellsHumansIschemiaMembrane ProteinsMiceMice, Inbred C57BLMice, KnockoutNeovascularization, PhysiologicNeuropilinsProtein Tyrosine Phosphatase, Non-Receptor Type 1Protein Tyrosine Phosphatase, Non-Receptor Type 2Retinal VesselsRNA InterferenceRNA, Small InterferingVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-2ZebrafishZebrafish ProteinsConceptsSmooth muscle cell-derived neuropilin-like proteinAberrant blood vessel formationNormal vascular developmentProtein tyrosineTC-PTPTransmembrane proteinTherapeutic targetBlood vessel formationVEGF responseNegative regulatorDevelopmental angiogenesisVEGFR-2Vascular developmentAttractive therapeutic targetESDNAngiogenesis regulationVE-cadherinVessel formationEC proliferationComplex formationRegulatorProteinNeuropilin expressionVEGF receptorsEndothelial VEGF
2012
In Vivo Imaging of Cerebral Microvascular Plasticity from Birth to Death
Harb R, Whiteus C, Freitas C, Grutzendler J. In Vivo Imaging of Cerebral Microvascular Plasticity from Birth to Death. Cerebrovascular And Brain Metabolism Reviews 2012, 33: 146-156. PMID: 23093067, PMCID: PMC3597363, DOI: 10.1038/jcbfm.2012.152.Peer-Reviewed Original ResearchConceptsVascular stabilityYoung adult miceFirst postnatal monthDegenerative neurological disordersVessel formationHypoxia-induced angiogenesisCerebral functionPostnatal monthAdult brainAdult miceIntact brainMicrovascular plasticityNeurological disordersFirst monthMicrovessel formationOlder adultsMetabolic challengesTwo-photon microscopyNew vesselsBaseline turnoverLong-term adaptive responsesIndividual microvesselsMiceVivo patternBrain
2009
Different Biological Processes Are Associated with Prognosis and Chemotherapy Sensitivity in the Different Molecular Subtypes of Breast Cancer.
Iwamoto T, Iwamoto T, Bianchini G, Coutant C, Shiang C, Matsuoka J, Symmans W, Hortobagyi G, Simon R, Pusztai L. Different Biological Processes Are Associated with Prognosis and Chemotherapy Sensitivity in the Different Molecular Subtypes of Breast Cancer. Cancer Research 2009, 69: 6124-6124. DOI: 10.1158/0008-5472.sabcs-09-6124.Peer-Reviewed Original ResearchER- cancersDifferent molecular subtypesChemotherapy sensitivityChemotherapy responseBreast cancerMolecular subtypesMeta-analysisPrognostic pathwaysCohort of patientsPlasma cell functionT cell differentiationNeoadjuvant therapySeparate cohortImmune functionPrognosisGlycolipid metabolismPredictive gene setsBlood vessel formationDifferent subtypesCancerCancer ResOxidative stressCell functionSubtypesVessel formationReticulon 4B (Nogo-B) is necessary for macrophage infiltration and tissue repair
Yu J, Fernández-Hernando C, Suarez Y, Schleicher M, Hao Z, Wright PL, DiLorenzo A, Kyriakides TR, Sessa WC. Reticulon 4B (Nogo-B) is necessary for macrophage infiltration and tissue repair. Proceedings Of The National Academy Of Sciences Of The United States Of America 2009, 106: 17511-17516. PMID: 19805174, PMCID: PMC2762666, DOI: 10.1073/pnas.0907359106.Peer-Reviewed Original ResearchConceptsBlood vessel assemblyBone marrow-derived macrophagesBone marrow reconstitution experimentsMarrow-derived macrophagesRac activationBlood vessel formationGene expressionReconstitution experimentsMacrophage infiltrationInflammatory gene expressionVessel formationBlood flow recoveryMacrophage-mediated inflammationTissue repairMyeloid cellsBlood flow controlVessel assemblyLimb ischemiaFunctional recoveryInflammatory responseReticulon 4BWound healingIschemiaFlow recoveryGenesCCM2 and CCM3 proteins contribute to vasculogenesis and angiogenesis in human placenta.
Tanriover G, Seval Y, Sati L, Gunel M, Demir N. CCM2 and CCM3 proteins contribute to vasculogenesis and angiogenesis in human placenta. Histology And Histopathology 2009, 24: 1287-94. PMID: 19688696, DOI: 10.14670/hh-24.1287.Peer-Reviewed Original ResearchMeSH KeywordsApoptosis Regulatory ProteinsCarrier ProteinsCase-Control StudiesCentral Nervous System NeoplasmsFemaleHemangioma, Cavernous, Central Nervous SystemHumansImmunohistochemistryMembrane ProteinsNeovascularization, PathologicPlacentaPregnancyPregnancy Trimester, FirstPregnancy Trimester, ThirdProto-Oncogene ProteinsConceptsCerebral cavernous malformationsVascular endotheliumBlood vessel formationHuman placentaMature intermediate villiVascular malformationsStem villiTerm placentaVessel formationIntermediate villiNormal brain parenchymaMeans of immunohistochemistryCentral nervous systemEndothelium-lined vascular channelsWestern blot analysisEarly pregnancyBrain parenchymaModerate immunostainingCavernous malformationsNervous systemVascular channelsPlacental developmentPlacentaEndotheliumLess expression
2004
The mechanisms of idiopathic pulmonary fibrosis: can we see the elephant?
Gibson K, Kaminski N. The mechanisms of idiopathic pulmonary fibrosis: can we see the elephant? Drug Discovery Today Disease Mechanisms 2004, 1: 117-122. DOI: 10.1016/j.ddmec.2004.08.002.Peer-Reviewed Original ResearchIdiopathic pulmonary fibrosisPulmonary fibrosisNew therapeutic interventionsTherapeutic interventionsPathogenesis of IPFEarly-stage diseaseChronic respiratory illnessColorado Health Sciences CenterPotential new therapiesNew vessel formationNovel disease mechanismsHealth Sciences CenterMatrix metalloprotease activationStage diseaseRespiratory illnessEffective therapyLung tissueNew therapiesAnimal modelsDisease pathogenesisFibrosisPathogenesisMetalloprotease activationDisease mechanismsVessel formationRetinoic acid controls blood vessel formation by modulating endothelial and mural cell interaction via suppression of Tie2 signaling in vascular progenitor cells
Suzuki Y, Komi Y, Ashino H, Yamashita J, Inoue J, Yoshiki A, Eichmann A, Amanuma H, Kojima S. Retinoic acid controls blood vessel formation by modulating endothelial and mural cell interaction via suppression of Tie2 signaling in vascular progenitor cells. Blood 2004, 104: 166-169. PMID: 15026310, DOI: 10.1182/blood-2003-09-3293.Peer-Reviewed Original ResearchConceptsVascular progenitor cellsAll-Trans Retinoic AcidChicken chorioallantoic membraneEndothelial cellsTie2 signalingProgenitor cellsBlood vessel formationMural cellsEpithelial layerExpression of angiopoietin-2Vessel formationRetinoic acidImpaired vascular remodelingImpaired branchingAngiopoietin-2Ang-1Vascular remodelingRo41-5253Cell interactionsMural cell interactions
2001
Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo
Hartlapp I, Abe R, Saeed R, Peng T, Voelter W, Bucala R, Metz C. Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. The FASEB Journal 2001, 15: 2215-2224. PMID: 11641248, DOI: 10.1096/fj.01-0049com.Peer-Reviewed Original ResearchConceptsBlood vessel formationAngiogenic phenotypeVessel formationMesenchymal cell typesEndothelial cell invasionEndothelial cellsExtracellular matrix-degrading enzymesEndothelial cell migrationGrowth factorCellular microenvironmentMatrix-degrading enzymesCell invasionCell migrationCell typesCultured endothelial cellsTube formationHematopoietic growth factorsPromotion of angiogenesisPhenotypeAngiogenesis modelMicrovascular endothelial cellsCultured fibrocytesEnzymeAngiogenesisVivo
1997
The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2
Sin N, Meng L, Wang M, Wen J, Bornmann W, Crews C. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 6099-6103. PMID: 9177176, PMCID: PMC21008, DOI: 10.1073/pnas.94.12.6099.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAminopeptidasesAnimalsAntibiotics, AntineoplasticBinding SitesCattleCyclohexanesFatty Acids, UnsaturatedHumansKineticsMammalsMetalloendopeptidasesMethionyl AminopeptidasesMolecular Sequence DataNeovascularization, PathologicO-(Chloroacetylcarbamoyl)fumagillolSaccharomyces cerevisiaeSequence AlignmentSequence Homology, Amino AcidSesquiterpenesConceptsMethionine aminopeptidaseMetAP-1MetAP-2Mammalian proteinsBlood vessel formationVegetative growthTNP-470New blood vessel formationPotent biological activitiesMolecular modeProteinFungal metabolitesVessel formationAnimal model studiesAminopeptidaseAnti-angiogenic compoundsDetailed pharmacological studiesBiological activityImportant targetFumagillinClinical trialsSolid tumorsPharmacological studiesNatural productsSaccharomyces
1989
Angiogenic properties of normal and psoriatic skin associate with epidermis, not dermis.
Malhotra R, Stenn K, Fernandez L, Braverman I. Angiogenic properties of normal and psoriatic skin associate with epidermis, not dermis. Laboratory Investigation 1989, 61: 162-5. PMID: 2474089.Peer-Reviewed Original ResearchConceptsPsoriatic patientsPsoriatic plaque skinInflammatory cellsVascular proliferationPsoriatic lesionsPsoriatic skinNormal subjectsSkin diseasesDay 2Nonpsoriatic skinNormal skinPatient's skinAngiogenic activityAngiogenic stimuliVessel growthAngiogenic propertiesDermisNew vesselsAngiogenic assaysSkinPsoriasisVessel formationPatientsEpidermal growthLesions
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply