2025
Constrained optimization of scaffold behavior for improving tissue engineered vascular grafts
Hsu R, Szafron J, Carvalho C, Humphrey J, Marsden A. Constrained optimization of scaffold behavior for improving tissue engineered vascular grafts. Journal Of Biomechanics 2025, 186: 112670. PMID: 40286630, PMCID: PMC12085276, DOI: 10.1016/j.jbiomech.2025.112670.Peer-Reviewed Original ResearchConceptsTissue Engineered Vascular GraftsDesign parametersFunctions of native blood vesselsNative blood vesselsVascular graftsRelevant failure modesScaffold microstructureCompliance matchingMechanical behaviorBiodegradable scaffoldsLoad transferFailure modesExperimental testsOptimal designDegradation kineticsNumerical optimizationRemodeling outcomesConstrained optimizationVessel complianceDesignGraft remodelingFavorable characteristicsNeotissueIn silico frameworkParametersOversized Conduits Predict Stenosis in Tissue Engineered Vascular Grafts
Blum K, Turner M, Schwarz E, Best C, Kelly J, Yates A, Hor K, Matsuzaki Y, Drews J, Zakko J, Shah K, Shinoka T, Humphrey J, Marsden A, Breuer C. Oversized Conduits Predict Stenosis in Tissue Engineered Vascular Grafts. JACC Basic To Translational Science 2025, 101248. PMID: 40243957, DOI: 10.1016/j.jacbts.2025.02.008.Peer-Reviewed Original ResearchTissue-engineered vascular graftsImplanting biodegradable scaffoldsWall shear stressComputational fluid dynamicsVascular graftsBiodegradable scaffoldsShear stressFluid dynamicsFlow patternsWeeks postimplantationAutologous cellsNondimensionalizationReducing stenosisTreat congenital heart diseaseComplex cardiac repair
2020
Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs
Luo J, Qin L, Zhao L, Gui L, Ellis MW, Huang Y, Kural MH, Clark JA, Ono S, Wang J, Yuan Y, Zhang SM, Cong X, Li G, Riaz M, Lopez C, Hotta A, Campbell S, Tellides G, Dardik A, Niklason LE, Qyang Y. Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs. Cell Stem Cell 2020, 26: 251-261.e8. PMID: 31956039, PMCID: PMC7021512, DOI: 10.1016/j.stem.2019.12.012.Peer-Reviewed Original Research
2017
Tissue engineered vascular grafts: current state of the field
Ong CS, Zhou X, Huang CY, Fukunishi T, Zhang H, Hibino N. Tissue engineered vascular grafts: current state of the field. Expert Review Of Medical Devices 2017, 14: 383-392. PMID: 28447487, DOI: 10.1080/17434440.2017.1324293.Peer-Reviewed Original Research
2016
Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model
Fukunishi T, Best CA, Sugiura T, Opfermann J, Ong CS, Shinoka T, Breuer CK, Krieger A, Johnson J, Hibino N. Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. Journal Of Thoracic And Cardiovascular Surgery 2016, 153: 924-932. PMID: 27938900, PMCID: PMC5715716, DOI: 10.1016/j.jtcvs.2016.10.066.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood Vessel ProsthesisBlood Vessel Prosthesis ImplantationComputed Tomography AngiographyComputer-Aided DesignEndothelial CellsExtracellular MatrixMacrophagesModels, AnimalMyocytes, Smooth MuscleNanostructuresNanotechnologyNeointimaPhlebographyPrinting, Three-DimensionalProsthesis DesignSheep, DomesticTime FactorsTissue EngineeringVascular PatencyVascular RemodelingVena Cava, InferiorVenous PressureConceptsTissue-engineered vascular graftsSimilar mechanical propertiesComplex anatomical shapesMechanical propertiesVascular graftsNative inferior vena cavaBiodegradable scaffoldsComputer-aided designFeasible technologyNanofiber scaffoldsBiomechanical evaluationPrintingPressure gradientMandrelWall thicknessScaffoldsTechnologyAnatomic requirementsThicknessLayerDepositionEndothelializationTissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model
Fukunishi T, Best CA, Sugiura T, Shoji T, Yi T, Udelsman B, Ohst D, Ong CS, Zhang H, Shinoka T, Breuer CK, Johnson J, Hibino N. Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model. PLOS ONE 2016, 11: e0158555. PMID: 27467821, PMCID: PMC4965077, DOI: 10.1371/journal.pone.0158555.Peer-Reviewed Original ResearchConceptsMechanical propertiesPCL/chitosan scaffoldsNeotissue formationSmall diameter prosthetic graftsMechanical analysisVascular graftsElectrospun polycaprolactoneChitosan scaffoldsBiodegradable scaffoldsTEVGsArterial vascular graftsBlend nanofibersFast degradationPolycaprolactoneWall thicknessScaffoldsOriginal scaffoldMaterialsHost cell infiltrationPropertiesNanofibersMatrix constituentsNeotissuePatient's own cellsMacrophage infiltration
2013
Beyond Burst Pressure: Initial Evaluation of the Natural History of the Biaxial Mechanical Properties of Tissue-Engineered Vascular Grafts in the Venous Circulation Using a Murine Model
Naito Y, Lee YU, Yi T, Church SN, Solomon D, Humphrey JD, Shin'oka T, Breuer CK. Beyond Burst Pressure: Initial Evaluation of the Natural History of the Biaxial Mechanical Properties of Tissue-Engineered Vascular Grafts in the Venous Circulation Using a Murine Model. Tissue Engineering Part A 2013, 20: 346-355. PMID: 23957852, PMCID: PMC3875183, DOI: 10.1089/ten.tea.2012.0613.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomechanical PhenomenaBlood CirculationBlood Vessel ProsthesisExtracellular MatrixFibrillin-1FibrillinsImplants, ExperimentalMatrix Metalloproteinase 2Matrix Metalloproteinase 9MiceMice, SCIDMicrofilament ProteinsModels, AnimalPressureTissue EngineeringTissue ScaffoldsVena Cava, InferiorConceptsTissue-engineered vascular graftsMechanical propertiesBiaxial propertiesNeotissue formationBiaxial mechanical propertiesWeeks of implantationVascular graftsBurst pressureBiodegradable scaffoldsVascular neotissue formationMicrostructural compositionMechanobiological principlesPropertiesGreat promiseBenchDeposition
2011
Development of Novel Biodegradable Polymer Scaffolds for Vascular Tissue Engineering
Gui L, Zhao L, Spencer RW, Burghouwt A, Taylor MS, Shalaby SW, Niklason LE. Development of Novel Biodegradable Polymer Scaffolds for Vascular Tissue Engineering. Tissue Engineering Part A 2011, 17: 1191-1200. PMID: 21143045, PMCID: PMC3079248, DOI: 10.1089/ten.tea.2010.0508.Peer-Reviewed Original ResearchConceptsTissue engineering approachesTissue-engineered blood vesselsBiodegradable polymer scaffoldsVascular tissue engineeringPolyglycolic acidDegradation profileTissue mechanicsEngineering approachVessel mechanicsPolymers IIIPolymer scaffoldsBiodegradable scaffoldsTissue engineeringPolymeric materialsDegradation characteristicsMatrix-rich tissuesSynthetic polymersPolymer IPolymer IIPolymer fragmentsAqueous conditionsPolymersPotential applicationsSimilar degradation profilesMechanics
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply