2022
VE607 stabilizes SARS-CoV-2 Spike in the “RBD-up” conformation and inhibits viral entry
Ding S, Ullah I, Gong SY, Grover J, Mohammadi M, Chen Y, Vézina D, Beaudoin-Bussières G, Verma VT, Goyette G, Gaudette F, Richard J, Yang D, Smith AB, Pazgier M, Côté M, Abrams C, Kumar P, Mothes W, Uchil P, Finzi A, Baron C. VE607 stabilizes SARS-CoV-2 Spike in the “RBD-up” conformation and inhibits viral entry. IScience 2022, 25: 104528. PMID: 35677392, PMCID: PMC9164512, DOI: 10.1016/j.isci.2022.104528.Peer-Reviewed Original ResearchSARS-CoV-2 infectionAuthentic SARS-CoV-2K18-hACE2 miceS-ACE2 interactionsDevelopment of immunotherapySARS-CoV-2 spikeSARS-CoV-2SARS-CoV-1Prophylactic treatmentLow micromolar concentrationsViral replicationACE2 receptorPseudoviral particlesViral entrySpike glycoproteinPotential targetCOVID-19Drug developmentInfectionACE2 interfaceHost cellsMicromolar concentrationsReceptorsTreatmentRBDIn Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds
Aminpour M, Cannariato M, Preto J, Safaeeardebili M, Moracchiato A, Doria D, Donato F, Zizzi E, Deriu M, Scheim D, Santin A, Tuszynski J. In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds. Computation 2022, 10: 51. DOI: 10.3390/computation10040051.Peer-Reviewed Original ResearchAnti-inflammatory pathwaySARS-CoV-2 virusAlpha 7 nicotinic acetylcholine receptorCholinergic anti-inflammatory pathwayAnti-viral effectsActivity of ivermectinNicotinic acetylcholine receptorsBiological mechanismsVagus nerveCytokine productionImmune cellsClinical studiesCD147 receptorViral penetrationAcetylcholine receptorsNeuronal tissueIvermectinMolecular targetsHigh affinitySpike glycoproteinPhysiological concentrationsMorbidityCOVID-19VirusReceptorsSARS-CoV-2 Variants Increase Kinetic Stability of Open Spike Conformations as an Evolutionary Strategy
Yang Z, Han Y, Ding S, Shi W, Zhou T, Finzi A, Kwong PD, Mothes W, Lu M. SARS-CoV-2 Variants Increase Kinetic Stability of Open Spike Conformations as an Evolutionary Strategy. MBio 2022, 13: e03227-21. PMID: 35164561, PMCID: PMC8844933, DOI: 10.1128/mbio.03227-21.Peer-Reviewed Original ResearchConceptsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantsAngiotensin-converting enzyme 2 receptorHuman angiotensin-converting enzyme 2 (ACE2) receptorVirus entryEnzyme 2 (ACE2) receptorTarget of antibodiesCOVID-19 vaccineSARS-CoV-2S variantsVirus particlesSARS-CoV-2 adaptationConvalescent patientsAntibody therapyAntibody responseImmune evasionE484KD614GSpike glycoproteinHarbor mutationsHuman hostVaccineS glycoproteinPrimary targetSoluble trimersHACE2
2021
Computational insights into the membrane fusion mechanism of SARS-CoV-2 at the cellular level
Wang J, Maschietto F, Guberman-Pfeffer MJ, Reiss K, Allen B, Xiong Y, Lolis E, Batista VS. Computational insights into the membrane fusion mechanism of SARS-CoV-2 at the cellular level. Computational And Structural Biotechnology Journal 2021, 19: 5019-5028. PMID: 34540146, PMCID: PMC8442599, DOI: 10.1016/j.csbj.2021.08.053.Peer-Reviewed Original ResearchMembrane fusion mechanismMembrane fusionSpike trimerNeutral amino acid transporterHost cellular membranesAmino acid transportersCentral stalkCentral poreHost membraneFusion mechanismCellular membranesAcid transportersMolecular levelViral membraneCellular levelEnzymatic activityChoreographic eventFusion peptideAntiviral inhibitorsDrug designAttractive targetInitial bindingMembraneConformational constraintsSpike glycoprotein
2020
A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection
Alsoussi WB, Turner JS, Case JB, Zhao H, Schmitz AJ, Zhou JQ, Chen RE, Lei T, Rizk AA, McIntire KM, Winkler ES, Fox JM, Kafai NM, Thackray LB, Hassan AO, Amanat F, Krammer F, Watson CT, Kleinstein SH, Fremont DH, Diamond MS, Ellebedy AH. A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. The Journal Of Immunology 2020, 205: ji2000583. PMID: 32591393, PMCID: PMC7566074, DOI: 10.4049/jimmunol.2000583.Peer-Reviewed Original ResearchMeSH KeywordsAngiotensin-Converting Enzyme 2AnimalsAntibodies, MonoclonalAntibodies, NeutralizingAntibodies, ViralBetacoronavirusChlorocebus aethiopsCoronavirus InfectionsCOVID-19Disease Models, AnimalEpitope MappingFemaleHEK293 CellsHumansImmunodominant EpitopesMiceMice, Inbred C57BLPandemicsPeptidyl-Dipeptidase APneumonia, ViralProtein Interaction Domains and MotifsSARS-CoV-2Spike Glycoprotein, CoronavirusTransfectionVero CellsConceptsSARS-CoV-2 infectionSARS-CoV-2Receptor-binding domainSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Angiotensin-converting enzyme 2Human angiotensin-converting enzyme 2Wild-type SARS-CoV-2Lung viral loadsSyndrome coronavirus 2Millions of infectionsTrimeric spike glycoproteinLicensed therapeuticsViral loadCoronavirus 2Systemic disseminationEffective antiviralsEnzyme 2Murine modelMurine mAbsEffective interventionsInfectionWeight lossSpike glycoprotein
1991
Membrane fusion activity, oligomerization, and assembly of the rabies virus glycoprotein
Whitt M, Buonocor L, Prehaud C, Rose J. Membrane fusion activity, oligomerization, and assembly of the rabies virus glycoprotein. Virology 1991, 185: 681-688. PMID: 1660200, DOI: 10.1016/0042-6822(91)90539-n.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, ViralBase SequenceCell LineCentrifugation, Density GradientCricetinaeFlow CytometryGenetic Complementation TestGlycoproteinsHumansHydrogen-Ion ConcentrationKineticsMacromolecular SubstancesMembrane FusionMembrane GlycoproteinsMiceMolecular Sequence DataPlasmidsRabies virusRecombinant Fusion ProteinsVesicular stomatitis Indiana virusViral Envelope ProteinsViral Fusion ProteinsConceptsVSV G proteinG protein trimersMembrane fusion activityVirus G proteinG proteinsRabies G proteinFusion activityHybrid proteinProtein trimerVesicular stomatitis virus G proteinVirus glycoproteinRabies virus glycoproteinCytoplasmic domainMembrane fusionExtracellular domainHeLa cellsRabies virus G proteinCell surfaceProteinVSV particlesSucrose gradientsVSV infectivityGlycoproteinSpike glycoproteinChemical crosslinking
1985
Effects of monovalent cations on Semliki Forest virus entry into BHK-21 cells.
Helenius A, Kielian M, Wellsteed J, Mellman I, Rudnick G. Effects of monovalent cations on Semliki Forest virus entry into BHK-21 cells. Journal Of Biological Chemistry 1985, 260: 5691-5697. PMID: 3988769, DOI: 10.1016/s0021-9258(18)89078-0.Peer-Reviewed Original ResearchConceptsSemliki Forest virusEndosome membraneViral envelopeBaby hamster kidney cellsMammalian cellsEndosomal membranesLow endosomalBHK-21 cellsHamster kidney cellsVirus endocytosisIntact cellsConformational changesEndosomesPrelysosomal endosomesViral spike glycoproteinVirus fusionKidney cellsAcidic endosomal pHViral RNAVoltage-sensitive probeEndocytosisVirus entryEndosomal pHCellsSpike glycoprotein
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply