2025
Generating synthetic brain PET images of synaptic density based on MR T1 images using deep learning
Zheng X, Worhunsky P, Liu Q, Guo X, Chen X, Sun H, Zhang J, Toyonaga T, Mecca A, O’Dell R, van Dyck C, Angarita G, Cosgrove K, D’Souza D, Matuskey D, Esterlis I, Carson R, Radhakrishnan R, Liu C. Generating synthetic brain PET images of synaptic density based on MR T1 images using deep learning. EJNMMI Physics 2025, 12: 30. PMID: 40163154, PMCID: PMC11958861, DOI: 10.1186/s40658-025-00744-5.Peer-Reviewed Original ResearchCannabis use disorderStructural similarity indexPET imagingImages of higher qualityMR-T1 imagesMean square errorUse disorderEncoder-decoderDeep learningCross-validation processData-driven approachDiagnostic categoriesLow-dose scansPredicted imageTemporal regionsBrain disordersGround truthT1-weighted MRISynaptic densityHuman brainSimilarity indexDisordersSevere neurological disordersTranslation accuracyNoise reduction
2024
A Surgical Protocol for Establishing Spinal Cord Ischemia with Extended Lifespan and Low Complication Rates in Rats
Yasuda N, Sasaki M, Kocsis J, Kawaharada N, Honmou O. A Surgical Protocol for Establishing Spinal Cord Ischemia with Extended Lifespan and Low Complication Rates in Rats. World Neurosurgery 2024, 188: e349-e356. PMID: 38789035, DOI: 10.1016/j.wneu.2024.05.114.Peer-Reviewed Original ResearchIschemic spinal cord injurySpinal cord ischemiaCord ischemiaComplication rateRat modelTherapeutic strategiesEvaluate new therapeutic strategiesFunctional recoveryMale Sprague-Dawley ratsLow complication rateSprague-Dawley ratsSpecialized surgical equipmentExperimental animal modelsImprove functional recoveryPromote functional recoverySpinal cord injuryCross-clampingSevere neurological disordersAzygos veinSurgical protocolDescending AortaBulldog clampsLumbar levelsSpinal cordIschemic lesionsPROTAC EZH2 degrader-1 overcomes the resistance of podophyllotoxin derivatives in refractory small cell lung cancer with leptomeningeal metastasis
Shi M, Ding X, Tang L, Cao W, Su B, Zhang J. PROTAC EZH2 degrader-1 overcomes the resistance of podophyllotoxin derivatives in refractory small cell lung cancer with leptomeningeal metastasis. BMC Cancer 2024, 24: 504. PMID: 38644473, PMCID: PMC11034131, DOI: 10.1186/s12885-024-12244-3.Peer-Reviewed Original ResearchConceptsSmall cell lung cancerCell lung cancerMouse modelLung cancerRefractory small cell lung cancerNude miceIn vivo drug testingCell linesDrug testingLM cellsSensitivity of cisplatinIn vitro drug testingIncreased in vitroBackgroundLeptomeningeal metastasisLeptomeningeal metastasesSevere neurological disordersAssociated with several neurological disordersDrug sensitivityIn vivo live imagingHistological examinationCarotid arteryEffective treatmentMetastasisDrug trialsExpressing luciferase
2021
In Vivo Brain GSH: MRS Methods and Clinical Applications
Bottino F, Lucignani M, Napolitano A, Dellepiane F, Visconti E, Espagnet M, Pasquini L. In Vivo Brain GSH: MRS Methods and Clinical Applications. Antioxidants 2021, 10: 1407. PMID: 34573039, PMCID: PMC8468877, DOI: 10.3390/antiox10091407.Peer-Reviewed Original ResearchHealthy controlsNeurological disordersBrain areasGSH levelsBrain GSH levelsMagnetic resonance spectroscopySevere neurological disordersExogenous toxic agentsBrain antioxidant defensesGSH concentrationTherapeutic targetClinical applicationStandard reference valuesBrainDisordersToxic agentsAntioxidant defensePhysiological functionsGSHSubjects
2019
Mechanisms of Neurological Dysfunction in GOSR2 Progressive Myoclonus Epilepsy, a Golgi SNAREopathy
Jepson JEC, Praschberger R, Krishnakumar SS. Mechanisms of Neurological Dysfunction in GOSR2 Progressive Myoclonus Epilepsy, a Golgi SNAREopathy. Neuroscience 2019, 420: 41-49. PMID: 30954670, DOI: 10.1016/j.neuroscience.2019.03.057.Peer-Reviewed Original ResearchConceptsEndoplasmic reticulumSNARE proteinsProgressive myoclonus epilepsySecretory trafficking pathwaysCis-Golgi membranesMis-sense mutationsTransport vesiclesGolgi transportTrafficking pathwaysVesicles budSecretory pathwaySuccessive fusion eventsTarget membraneFusion eventsEssential functionsDevelopmental defectsMolecular mechanismsMyoclonus epilepsyProteinFusion stepSevere neurological disordersMutationsMembranePathwayInitial step
2016
Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome
Ammann S, Schulz A, Krägeloh-Mann I, Dieckmann N, Niethammer K, Fuchs S, Eckl K, Plank R, Werner R, Altmüller J, Thiele H, Nürnberg P, Bank J, Strauss A, von Bernuth H, Zur Stadt U, Grieve S, Griffiths G, Lehmberg K, Hennies H, Ehl S. Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood 2016, 127: 997-1006. PMID: 26744459, PMCID: PMC7611501, DOI: 10.1182/blood-2015-09-671636.Peer-Reviewed Original ResearchConceptsAdaptor protein 3Hermansky-Pudlak syndromeTransport of lysosome-related organellesAssociated with albinismAdaptor protein-3 complexLysosome-related organellesHermansky-PudlakWhole-exome sequencingPlatelet storage pool deficiencyPatient T cellsLack of bleedingStorage pool deficiencyExome sequencingNull mutationMouse mutantsNeurodevelopmental delaySevere neurological disordersT cellsAP3D1Impaired hearingNeurological phenotypeNeurological symptomsHeterogeneous diseaseHomozygous mutationMutations
2009
Mitochondrial dysfunction in CA1 hippocampal neurons of the UBE3A deficient mouse model for Angelman syndrome
Su H, Fan W, Coskun PE, Vesa J, Gold JA, Jiang YH, Potluri P, Procaccio V, Acab A, Weiss JH, Wallace DC, Kimonis VE. Mitochondrial dysfunction in CA1 hippocampal neurons of the UBE3A deficient mouse model for Angelman syndrome. Neuroscience Letters 2009, 487: 129-133. PMID: 19563863, PMCID: PMC2888840, DOI: 10.1016/j.neulet.2009.06.079.Peer-Reviewed Original ResearchConceptsWild-type littermatesAngelman syndromeMaternal UBE3A alleleMitochondrial dysfunctionCA1 hippocampal neuronsSynaptic vesicle densityWhole brain mitochondriaDeficient mouse modelUbiquitin protein ligase E3ASevere neurological disordersAS miceHippocampal neuronsHippocampal regionMouse modelOxidative phosphorylationNeurological disordersBrain mitochondriaSyndromeMiceVesicle densityPathophysiologyDysfunctionDense mitochondriaLittermatesUBE3A
2007
Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation
van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, de Avila Freire R, Jiang YH, Elgersma Y, Weeber EJ. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation. Nature Neuroscience 2007, 10: 280-282. PMID: 17259980, DOI: 10.1038/nn1845.Peer-Reviewed Original ResearchMeSH KeywordsAngelman SyndromeAnimalsBehavior, AnimalCalcium-Calmodulin-Dependent Protein Kinase Type 2Conditioning, ClassicalDisease Models, AnimalExcitatory Postsynaptic PotentialsFemaleFreezing Reaction, CatalepticHippocampusIn Vitro TechniquesMaleMaze LearningMental DisordersMiceMice, Inbred C57BLMice, Neurologic MutantsMotor ActivityPhosphorylationPhosphotransferasesReaction TimeTime FactorsUbiquitin-Protein LigasesConceptsMouse modelAngelman syndromeAS mouse modelSevere neurological disordersNeurological deficitsMotor dysfunctionA miceBehavioral deficitsCellular deficitsNeurological disordersInhibitory phosphorylationMental retardationSyndromeDeficitsΑCaMKIIAdditional mutationsInhibitory phosphorylation sites
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply