Featured Publications
Biocompatibility of platinum-based bulk metallic glass in orthopedic applications
Loye AM, Kwon HK, Dellal D, Ojeda R, Lee S, Davis R, Nagle N, Doukas PG, Schroers J, Lee FY, Kyriakides TR. Biocompatibility of platinum-based bulk metallic glass in orthopedic applications. Biomedical Materials 2021, 16: 045018. PMID: 33873168, DOI: 10.1088/1748-605x/abf981.Peer-Reviewed Original ResearchConceptsBulk metallic glassPt-BMGPlatinum-based bulk metallic glassMetallic glassesConventional metallic implantsCorrosion resistanceHigh strengthMechanical testingOrthopedic applicationsBone applicationsMetallic implantsMicro-computed tomographyAmorphous metalsTitaniumWearBiocompatibilitySimilar biocompatibilityFurther processingGlassDuctilityNanopatternsNanoscaleApplicationsMesenchymal stem cellsStrength
2015
CA‐074Me compound inhibits osteoclastogenesis via suppression of the NFATc1 and c‐FOS signaling pathways
Patel N, Nizami S, Song L, Mikami M, Hsu A, Hickernell T, Chandhanayingyong C, Rho S, Compton JT, Caldwell J, Kaiser PB, Bai H, Lee HG, Fischer CR, Lee FY. CA‐074Me compound inhibits osteoclastogenesis via suppression of the NFATc1 and c‐FOS signaling pathways. Journal Of Orthopaedic Research® 2015, 33: 1474-1486. PMID: 25428830, DOI: 10.1002/jor.22795.Peer-Reviewed Original ResearchConceptsOsteolytic disordersOsteoclast biologyBone resorptionCA-074MeC-FOSMechanisms of cathepsinsCathepsin B knockout miceB knockout miceCathepsin B inhibitor CA-074Dose-dependent mannerOsteoclast resorption pitsCathepsin B inhibitionInhibits osteoclastogenesisNFATc1 pathwayNew therapiesOsteoclastogenic effectsCA-074Knockout miceLysosomal proteasesMature osteoclastsResorption pitsCathepsin KNew targetsOsteoclastsCompound inhibits
2008
What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles?
Tuan RS, Lee FY, T Konttinen Y, Wilkinson JM, Smith RL. What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? Journal Of The American Academy Of Orthopaedic Surgeons 2008, 16 Suppl 1: s42-8. PMID: 18612013, PMCID: PMC2714366, DOI: 10.5435/00124635-200800001-00010.Peer-Reviewed Original ResearchMeSH KeywordsBasic Helix-Loop-Helix Transcription FactorsBiocompatible MaterialsBone ResorptionDinoprostoneEndothelial CellsFibroblastsForeign-Body ReactionHumansInterleukin-1Interleukin-6Interleukin-8Joint ProsthesisMacrophage Colony-Stimulating FactorOsteoclastsOsteogenesisProsthesis FailureRANK LigandStem CellsT-LymphocytesTumor Necrosis Factor-alphaConceptsBone lossTNF-alphaIL-1Inflammatory bone lossPro-osteoclastogenic cytokinesGene functionHost inflammatory responsePeriprosthetic bone lossBone marrow-derived mesenchymal stem cellsMarrow-derived mesenchymal stem cellsGenetic variationBasic science dataMolecular mechanismsMesenchymal stem cellsMechanism of actionPeriprosthetic inflammationIL-6IL-8M-SCFInflammatory responseT cellsStem cellsAltered susceptibilityBiologic effectsOsteoprogenitor cells
2005
Zoledronate induces apoptosis in cells from fibro‐cellular membrane of unicameral bone cyst (UBC)
Yu J, Chang S, Suratwala S, Chung W, Abdelmessieh P, Lee H, Yang J, Lee F. Zoledronate induces apoptosis in cells from fibro‐cellular membrane of unicameral bone cyst (UBC). Journal Of Orthopaedic Research® 2005, 23: 1004-1012. PMID: 15921873, DOI: 10.1016/j.orthres.2005.02.012.Peer-Reviewed Original ResearchConceptsUnicameral bone cystsPeripheral blood mononuclear cellsBlood mononuclear cellsTrabecular bone cellsBone cystUBC cellsMononuclear cellsBone cellsZoledronate concentrationsIsolated peripheral blood mononuclear cellsImmunohisto/cytochemistryPercutaneous injection therapyAnti-resorptive agentsAnti-osteoclastogenic effectApoptotic fractionSTRO-1Potential therapeutic effectsPotential therapeutic roleEffect of zoledronateBenign cystic lesionsNitrogen-containing bisphosphonatesDose-dependent mannerOsteoclast-like cellsInjection therapyPathologic fractureμ-Calpain Regulates Receptor Activator of NF-κB Ligand (RANKL)-supported Osteoclastogenesis via NF-κB Activation in RAW 264.7 Cells*
Lee FY, Kim DW, Karmin JA, Hong D, Chang SS, Fujisawa M, Takayanagi H, Bigliani LU, Blaine TA, Lee HJ. μ-Calpain Regulates Receptor Activator of NF-κB Ligand (RANKL)-supported Osteoclastogenesis via NF-κB Activation in RAW 264.7 Cells*. Journal Of Biological Chemistry 2005, 280: 29929-29936. PMID: 15955824, DOI: 10.1074/jbc.m414600200.Peer-Reviewed Original ResearchConceptsRAW 264.7 cellsNF-kappaB activationReceptor activatorCalpain inhibitorsCell-permeable calpain inhibitorMatrix metalloproteinase-9Regulation of RANKLNF-κB activationNF-κB ligandNF-kappaB ligandMonocyte/macrophage progenitorsRole of calpainMurine RAW 264.7 cellsCell typesMetalloproteinase-9Osteoclastogenic markersCalpain activationResistant acidDecreased expressionOsteoclastogenesisRANKLCalpain activityMu-calpainInhibitorsActivationRecruitment of osteoclast precursors by stromal cell derived factor‐1 (SDF‐1) in giant cell tumor of bone
Liao TS, Yurgelun MB, Chang S, Zhang H, Murakami K, Blaine TA, Parisian M, Kim W, Winchester RJ, Lee F. Recruitment of osteoclast precursors by stromal cell derived factor‐1 (SDF‐1) in giant cell tumor of bone. Journal Of Orthopaedic Research® 2005, 23: 203-209. PMID: 15607894, DOI: 10.1016/j.orthres.2004.06.018.Peer-Reviewed Original ResearchConceptsGiant cell tumorSDF-1Osteoclast precursorsStromal cellsCell tumorsSDF-1 gene expressionTumor-induced osteoclastogenesisSDF-1 proteinRecombinant SDF-1Neoplastic stromal cellsReal-time RT-PCRHematopoetic stem cellsOsteoclast precursor cellsTime RT-PCRBone lesionsStudy of osteoclastogenesisChemotactic concentrationsChemoattractant factorGCT tissuesMonocyte/Specific receptorsRT-PCRDisease modelsPrecursor cellsFactor 1