2023
Manipulating mitochondrial electron flow enhances tumor immunogenicity
Mangalhara K, Varanasi S, Johnson M, Burns M, Rojas G, Esparza Moltó P, Sainz A, Tadepalle N, Abbott K, Mendiratta G, Chen D, Farsakoglu Y, Kunchok T, Hoffmann F, Parisi B, Rincon M, Vander Heiden M, Bosenberg M, Hargreaves D, Kaech S, Shadel G. Manipulating mitochondrial electron flow enhances tumor immunogenicity. Science 2023, 381: 1316-1323. PMID: 37733872, PMCID: PMC11034774, DOI: 10.1126/science.abq1053.Peer-Reviewed Original ResearchConceptsElectron transport chainMethylation-controlled J proteinMitochondrial electron transport chainElectron flowMitochondrial electron flowJ-proteinsEpigenetic activationTransport chainMitochondrial respirationTumor growthPresentation genesElectron entryNoncancer cellsMelanoma tumor growthCommon mechanismTherapeutic potentialGenesRelative contributionProteinGrowthKnockoutAntigen presentationRespirationT cell-mediated killingExpressionCombinatorial Immunotherapy with Agonistic CD40 Activates Dendritic Cells to Express IL12 and Overcomes PD-1 Resistance.
Krykbaeva I, Bridges K, Damsky W, Pizzurro G, Alexander A, McGeary M, Park K, Muthusamy V, Eyles J, Luheshi N, Turner N, Weiss S, Olino K, Kaech S, Kluger H, Miller-Jensen K, Bosenberg M. Combinatorial Immunotherapy with Agonistic CD40 Activates Dendritic Cells to Express IL12 and Overcomes PD-1 Resistance. Cancer Immunology Research 2023, 11: 1332-1350. PMID: 37478171, DOI: 10.1158/2326-6066.cir-22-0699.Peer-Reviewed Original ResearchConceptsPD-1 resistanceDendritic cellsTumor regressionAnti-PD-1 resistanceActivates Dendritic CellsCytokine secretion profilingSystemic cytokine profileTriple therapy combinationInnate immune activationAdaptive immune responsesComplete tumor regressionMajority of miceSignificant clinical challengeMouse melanoma modelT cell activationAgonistic CD40Checkpoint inhibitorsDC subsetsTriple therapyCytokine profileImmune activationCombinatorial immunotherapyTherapy combinationsT cellsClinical challengeIL-7R licenses a population of epigenetically poised memory CD8+ T cells with superior antitumor efficacy that are critical for melanoma memory
Micevic G, Daniels A, Flem-Karlsen K, Park K, Talty R, McGeary M, Mirza H, Blackburn H, Sefik E, Cheung J, Hornick N, Aizenbud L, Joshi N, Kluger H, Iwasaki A, Bosenberg M, Flavell R. IL-7R licenses a population of epigenetically poised memory CD8+ T cells with superior antitumor efficacy that are critical for melanoma memory. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2304319120. PMID: 37459511, PMCID: PMC10372654, DOI: 10.1073/pnas.2304319120.Peer-Reviewed Original ResearchConceptsIL-7R expressionT cellsIL-7RAntitumor memorySuperior antitumor efficacyCell-based therapiesTumor-specific T cellsAntigen-specific T cellsAntitumor efficacyPowerful antitumor immune responseMarkers of exhaustionTumor-specific CD8Antitumor immune responseIndependent prognostic factorAntitumor immune memoryMemory T cellsMajor risk factorSuperior antitumor activityFunctional CD8Memory CD8Prognostic factorsSurgical resectionAdvanced melanomaLymph nodesNaive miceDeterminants of overall survival in patients with metastatic uveal melanoma
Demkowicz P, Pointdujour‐Lim R, Miguez S, Lee Y, Jones B, Barker C, Bosenberg M, Abramson D, Shoushtari A, Kluger H, Francis J, Sznol M, Bakhoum M. Determinants of overall survival in patients with metastatic uveal melanoma. Cancer 2023, 129: 3275-3286. PMID: 37382208, PMCID: PMC11149607, DOI: 10.1002/cncr.34927.Peer-Reviewed Original ResearchConceptsAnti-PD-1 therapyMetastatic uveal melanomaDeath hazard ratioImmune checkpoint inhibitorsOverall survivalHazard ratioUveal melanomaSurvival outcomesFemale sexCheckpoint inhibitorsECOG scoreValidation cohortEastern Cooperative Oncology Group performance status scaleGood baseline performance statusMetastatic uveal melanoma patientsMetastatic UM patientsImproved overall survivalMedian overall survivalBaseline performance statusBetter survival outcomesImproved survival outcomesPotential of immunotherapyWorse survival outcomesImmune checkpoint therapyKaplan-Meier analysisDiscovery of decreased ferroptosis in male colorectal cancer patients with KRAS mutations
Yan H, Talty R, Jain A, Cai Y, Zheng J, Shen X, Muca E, Paty P, Bosenberg M, Khan S, Johnson C. Discovery of decreased ferroptosis in male colorectal cancer patients with KRAS mutations. Redox Biology 2023, 62: 102699. PMID: 37086630, PMCID: PMC10172914, DOI: 10.1016/j.redox.2023.102699.Peer-Reviewed Original ResearchConceptsKRAS mutant tumorsMale CRC patientsCRC patientsMale patientsKRAS mutationsMutant tumorsOverall survivalMale colorectal cancer patientsKRAS wild-type tumorsAberrant tumor metabolismColorectal cancer patientsCRC patient cohortsColorectal cancer casesFerroptosis-related genesWild-type tumorsNovel potential avenuesNormal colon tissuesPoor OSKRAS statusAdverse outcomesCRC cellsPatient cohortCancer patientsType tumorsCancer casesInterMEL: An international biorepository and clinical database to uncover predictors of survival in early-stage melanoma
Orlow I, Sadeghi K, Edmiston S, Kenney J, Lezcano C, Wilmott J, Cust A, Scolyer R, Mann G, Lee T, Burke H, Jakrot V, Shang P, Ferguson P, Boyce T, Ko J, Ngo P, Funchain P, Rees J, O’Connell K, Hao H, Parrish E, Conway K, Googe P, Ollila D, Moschos S, Hernando E, Hanniford D, Argibay D, Amos C, Lee J, Osman I, Luo L, Kuan P, Aurora A, Rothberg BE, Bosenberg M, Gerstenblith M, Thompson C, Bogner P, Gorlov I, Holmen S, Brunsgaard E, Saenger Y, Shen R, Seshan V, Nagore E, Ernstoff M, Busam K, Begg C, Thomas N, Berwick M, Consortium O. InterMEL: An international biorepository and clinical database to uncover predictors of survival in early-stage melanoma. PLOS ONE 2023, 18: e0269324. PMID: 37011054, PMCID: PMC10069769, DOI: 10.1371/journal.pone.0269324.Peer-Reviewed Original ResearchConceptsEarly-stage melanomaPrimary melanomaMemorial Sloan-Kettering Cancer CenterDisease-specific survivalPredictors of survivalMulti-institutional settingSomatic mutationsPre-established protocolMiRNA expressionScreening failureMulticenter studyCancer CenterDownstream testingLimited tumor tissueNucleic acid qualityClinical databaseMulticenter researchTumor tissueMelanomaTumor samplesFFPE tumorsArchival tissueFFPE tissue blocksTissue blocksSuccess rateValidation of the Prognostic Usefulness of the Gene Expression Profiling Test in Patients with Uveal Melanoma
Miguez S, Lee R, Chan A, Demkowicz P, Jones B, Long C, Abramson D, Bosenberg M, Sznol M, Kluger H, Goldbaum M, Francis J, Pointdujour-Lim R, Bakhoum M. Validation of the Prognostic Usefulness of the Gene Expression Profiling Test in Patients with Uveal Melanoma. Ophthalmology 2023, 130: 598-607. PMID: 36739981, PMCID: PMC10619207, DOI: 10.1016/j.ophtha.2023.01.020.Peer-Reviewed Original ResearchConceptsMetastasis-free survivalRisk of metastasisClass 2 tumorsAdditional prognostic valueRate of metastasisPrognostic usefulnessTumor sizeTumor characteristicsPrognostic valueUveal melanomaGene expression profile testingMemorial Sloan-Kettering Cancer CenterGEP classificationCox hazard regression analysisYale-New Haven HospitalHazards regression analysisGene expression profiling testsNew Haven HospitalClass 1 tumorsGEP class 2Class 1AMean followTumor thicknessCancer CenterSurveillance protocolFerroptosis in colorectal cancer: a future target?
Yan H, Talty R, Aladelokun O, Bosenberg M, Johnson C. Ferroptosis in colorectal cancer: a future target? British Journal Of Cancer 2023, 128: 1439-1451. PMID: 36703079, PMCID: PMC10070248, DOI: 10.1038/s41416-023-02149-6.Peer-Reviewed Original ResearchConceptsColorectal cancerRegulated cell deathCurrent treatment optionsForms of RCDCancer deathTreatment optionsCRC therapyCancer recurrenceTreatment strategiesRadiation therapyOvert toxicityTherapeutic targetDrug resistanceTherapyCancer cellsFerroptosisPotential roleCancerCell deathFuture targetsDeathRecent studiesBiological pathwaysChemotherapySurgery
2022
Targeting ULK1 Decreases IFNγ-Mediated Resistance to Immune Checkpoint Inhibitors.
Fenton S, Zannikou M, Ilut L, Fischietti M, Ji C, Oku C, Horvath C, Le Poole I, Bosenberg M, Bartom E, Kocherginsky M, Platanias L, Saleiro D. Targeting ULK1 Decreases IFNγ-Mediated Resistance to Immune Checkpoint Inhibitors. Molecular Cancer Research 2022, 21: 332-344. PMID: 36573964, PMCID: PMC10073316, DOI: 10.1158/1541-7786.mcr-22-0684.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsImmunosuppressive genesCheckpoint inhibitorsImmunostimulatory genesAnti-programmed cell death protein 1 therapyPharmacologic inhibitionIFNγ-induced expressionMelanoma cellsMajority of patientsTreatment of patientsTreatment of melanomaMelanoma tumor growthDrug target inhibitionICI therapyDurable responsesPatient survivalMetastatic melanomaPatient outcomesPoor survivalResponse rateTumor growthIFNγOverexpression of ULK1Context-dependent mannerMelanomaLongitudinal single-cell analysis of a patient receiving adoptive cell therapy reveals potential mechanisms of treatment failure
Qu R, Kluger Y, Yang J, Zhao J, Hafler D, Krause D, Bersenev A, Bosenberg M, Hurwitz M, Lucca L, Kluger H. Longitudinal single-cell analysis of a patient receiving adoptive cell therapy reveals potential mechanisms of treatment failure. Molecular Cancer 2022, 21: 219. PMID: 36514045, PMCID: PMC9749221, DOI: 10.1186/s12943-022-01688-5.Peer-Reviewed Original ResearchConceptsAdoptive cell therapySingle-cell analysisDepth single-cell analysisSingle-cell RNAACT productsDisease progressionT-cell receptor sequencingCell therapyFamily genesFeatures of exhaustionMultiple tumor typesCell expansionGenesNew clonotypesTIL preparationsClonal cell expansionCytokine therapyTreatment failureSerial bloodClonesEffector functionsSerial samplesTumor typesCellular therapyTherapyThe Crossroads of Cancer Epigenetics and Immune Checkpoint Therapy.
Micevic G, Bosenberg M, Yan Q. The Crossroads of Cancer Epigenetics and Immune Checkpoint Therapy. Clinical Cancer Research 2022, 29: 1173-1182. PMID: 36449280, PMCID: PMC10073242, DOI: 10.1158/1078-0432.ccr-22-0784.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsImmune checkpoint inhibitorsImmune checkpoint therapyT cell exhaustionCheckpoint therapyAntitumor immune responseT cell populationsCell-intrinsic immunityTypes of cancerViral mimicry responseLow response rateCheckpoint inhibitorsCurrent immunotherapiesPancreatic cancerSustained responsePreclinical modelsTreatment outcomesImmune responseEndogenous antigensResponse rateTumor typesMultiple epigenetic regulatorsCritical mediatorLow immunogenicityTherapyCancer
2021
KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements
Zhang SM, Cai WL, Liu X, Thakral D, Luo J, Chan LH, McGeary MK, Song E, Blenman KRM, Micevic G, Jessel S, Zhang Y, Yin M, Booth CJ, Jilaveanu LB, Damsky W, Sznol M, Kluger HM, Iwasaki A, Bosenberg MW, Yan Q. KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements. Nature 2021, 598: 682-687. PMID: 34671158, PMCID: PMC8555464, DOI: 10.1038/s41586-021-03994-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorDNA-Binding ProteinsEpigenesis, GeneticGene SilencingHeterochromatinHistone-Lysine N-MethyltransferaseHumansInterferon Type IJumonji Domain-Containing Histone DemethylasesMaleMelanomaMiceMice, Inbred C57BLMice, KnockoutNuclear ProteinsRepressor ProteinsRetroelementsTumor EscapeConceptsImmune checkpoint blockadeImmune evasionCheckpoint blockadeImmune responseAnti-tumor immune responseRobust adaptive immune responseTumor immune evasionAnti-tumor immunityAdaptive immune responsesType I interferon responseDNA-sensing pathwayMouse melanoma modelImmunotherapy resistanceMost patientsCurrent immunotherapiesTumor immunogenicityImmune memoryMelanoma modelCytosolic RNA sensingRole of KDM5BConsiderable efficacyInterferon responseImmunotherapyEpigenetic therapyBlockade
2020
IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy
Zhou T, Damsky W, Weizman OE, McGeary MK, Hartmann KP, Rosen CE, Fischer S, Jackson R, Flavell RA, Wang J, Sanmamed MF, Bosenberg MW, Ring AM. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 2020, 583: 609-614. PMID: 32581358, PMCID: PMC7381364, DOI: 10.1038/s41586-020-2422-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCD8-Positive T-LymphocytesDisease Models, AnimalFemaleHepatocyte Nuclear Factor 1-alphaHistocompatibility Antigens Class IHumansImmunotherapyIntercellular Signaling Peptides and ProteinsInterleukin-18Kaplan-Meier EstimateKiller Cells, NaturalLymphocytes, Tumor-InfiltratingMaleMiceNeoplasmsReceptors, Interleukin-18Stem CellsTumor MicroenvironmentConceptsIL-18IL-18BPT cellsAnti-PD-1 resistant tumorsWild-type IL-18Potent anti-tumor effectsMajor histocompatibility complex class IIL-18 pathwayIL-18 therapyInterleukin-18 pathwayMajor therapeutic barrierStem-like TCF1Anti-tumor immunityTumor-infiltrating lymphocytesNatural killer cellsRecombinant IL-18Histocompatibility complex class IAnti-tumor effectsComplex class IAnti-tumor activityMouse tumor modelsModern immunotherapyPrecursor CD8Effector CD8Exhausted CD8
2018
PD‐L1 methylation regulates PD‐L1 expression and is associated with melanoma survival
Micevic G, Thakral D, McGeary M, Bosenberg M. PD‐L1 methylation regulates PD‐L1 expression and is associated with melanoma survival. Pigment Cell & Melanoma Research 2018, 32: 435-440. PMID: 30343532, PMCID: PMC6475614, DOI: 10.1111/pcmr.12745.Peer-Reviewed Original ResearchConceptsPD-L1 expressionDNA methylationPD-1/PD-L1 immune checkpointIndependent survival prognostic factorPD-L1 promoter methylationPD-L1 immune checkpointSurvival prognostic factorsPD-L1 promoterPromoter DNA methylationOverall survivalImmune checkpointsPrognostic factorsMelanoma patientsMelanoma survivalEpigenetic mechanismsTranscriptional phenotypeClinical importanceMelanomaCpG lociMethylationPromoter methylationSurvivalTherapeutic applicationsExpressionPatients
2016
DNMT3b Modulates Melanoma Growth by Controlling Levels of mTORC2 Component RICTOR
Micevic G, Muthusamy V, Damsky W, Theodosakis N, Liu X, Meeth K, Wingrove E, Santhanakrishnan M, Bosenberg M. DNMT3b Modulates Melanoma Growth by Controlling Levels of mTORC2 Component RICTOR. Cell Reports 2016, 14: 2180-2192. PMID: 26923591, PMCID: PMC4785087, DOI: 10.1016/j.celrep.2016.02.010.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarrier ProteinsCell Line, TumorCell ProliferationDNA (Cytosine-5-)-MethyltransferasesDNA MethylationDown-RegulationGene Expression Regulation, NeoplasticHumansMechanistic Target of Rapamycin Complex 2Melanoma, ExperimentalMice, 129 StrainMice, Inbred C57BLMice, NudeMicroRNAsMultiprotein ComplexesNeoplasm TransplantationProportional Hazards ModelsRapamycin-Insensitive Companion of mTOR ProteinRNA InterferenceSkin NeoplasmsTOR Serine-Threonine KinasesTumor BurdenConceptsMelanoma formationPotential therapeutic targetMiR-196b expressionMouse melanoma modelPro-tumorigenic roleMTORC2 component RictorMelanoma growthTherapeutic targetMelanoma modelLoss of RictorHuman melanomaCancer typesTumor cellsMelanomaSpecific signaling pathwaysMTORC2 signalingSignaling pathwaysTurn preventsMiR-196b promoterDNA methyltransferase DNMT3BRictorControlling LevelsDNMT3BMethyltransferase DNMT3BCancer
2015
Genomic Classification of Cutaneous Melanoma
Network T, Akbani R, Akdemir K, Aksoy B, Albert M, Ally A, Amin S, Arachchi H, Arora A, Auman J, Ayala B, Baboud J, Balasundaram M, Balu S, Barnabas N, Bartlett J, Bartlett P, Bastian B, Baylin S, Behera M, Belyaev D, Benz C, Bernard B, Beroukhim R, Bir N, Black A, Bodenheimer T, Boice L, Boland G, Bono R, Bootwalla M, Bosenberg M, Bowen J, Bowlby R, Bristow C, Brockway-Lunardi L, Brooks D, Brzezinski J, Bshara W, Buda E, Burns W, Butterfield Y, Button M, Calderone T, Cappellini G, Carter C, Carter S, Cherney L, Cherniack A, Chevalier A, Chin L, Cho J, Cho R, Choi Y, Chu A, Chudamani S, Cibulskis K, Ciriello G, Clarke A, Coons S, Cope L, Crain D, Curley E, Danilova L, D’Atri S, Davidsen T, Davies M, Delman K, Demchok J, Deng Q, Deribe Y, Dhalla N, Dhir R, DiCara D, Dinikin M, Dubina M, Ebrom J, Egea S, Eley G, Engel J, Eschbacher J, Fedosenko K, Felau I, Fennell T, Ferguson M, Fisher S, Flaherty K, Frazer S, Frick J, Fulidou V, Gabriel S, Gao J, Gardner J, Garraway L, Gastier-Foster J, Gaudioso C, Gehlenborg N, Genovese G, Gerken M, Gershenwald J, Getz G, Gomez-Fernandez C, Gribbin T, Grimsby J, Gross B, Guin R, Gutschner T, Hadjipanayis A, Halaban R, Hanf B, Haussler D, Haydu L, Hayes D, Hayward N, Heiman D, Herbert L, Herman J, Hersey P, Hoadley K, Hodis E, Holt R, Hoon D, Hoppough S, Hoyle A, Huang F, Huang M, Huang S, Hutter C, Ibbs M, Iype L, Jacobsen A, Jakrot V, Janning A, Jeck W, Jefferys S, Jensen M, Jones C, Jones S, Ju Z, Kakavand H, Kang H, Kefford R, Khuri F, Kim J, Kirkwood J, Klode J, Korkut A, Korski K, Krauthammer M, Kucherlapati R, Kwong L, Kycler W, Ladanyi M, Lai P, Laird P, Lander E, Lawrence M, Lazar A, Łaźniak R, Lee D, Lee J, Lee J, Lee K, Lee S, Lee W, Leporowska E, Leraas K, Li H, Lichtenberg T, Lichtenstein L, Lin P, Ling S, Liu J, Liu O, Liu W, Long G, Lu Y, Ma, Ma Y, Mackiewicz A, Mahadeshwar H, Malke J, Mallery D, Manikhas G, Mann G, Marra M, Matejka B, Mayo M, Mehrabi S, Meng S, Meyerson M, Mieczkowski P, Miller J, Miller M, Mills G, Moiseenko F, Moore R, Morris S, Morrison C, Morton D, Moschos S, Mose L, Muller F, Mungall A, Murawa D, Murawa P, Murray B, Nezi L, Ng S, Nicholson D, Noble M, Osunkoya A, Owonikoko T, Ozenberger B, Pagani E, Paklina O, Pantazi A, Parfenov M, Parfitt J, Park P, Park W, Parker J, Passarelli F, Penny R, Perou C, Pihl T, Potapova O, Prieto V, Protopopov A, Quinn M, Radenbaugh A, Rai K, Ramalingam S, Raman A, Ramirez N, Ramirez R, Rao U, Rathmell W, Ren X, Reynolds S, Roach J, Robertson A, Ross M, Roszik J, Russo G, Saksena G, Saller C, Samuels Y, Sander C, Sander C, Sandusky G, Santoso N, Saul M, Saw R, Schadendorf D, Schein J, Schultz N, Schumacher S, Schwallier C, Scolyer R, Seidman J, Sekhar P, Sekhon H, Senbabaoglu Y, Seth S, Shannon K, Sharpe S, Sharpless N, Shaw K, Shelton C, Shelton T, Shen R, Sheth M, Shi Y, Shiau C, Shmulevich I, Sica G, Simons J, Sinha R, Sipahimalani P, Sofia H, Soloway M, Song X, Sougnez C, Spillane A, Spychała A, Stretch J, Stuart J, Suchorska W, Sucker A, Sumer S, Sun Y, Synott M, Tabak B, Tabler T, Tam A, Tan D, Tang J, Tarnuzzer R, Tarvin K, Tatka H, Taylor B, Teresiak M, Thiessen N, Thompson J, Thorne L, Thorsson V, Trent J, Triche T, Tsai K, Tsou P, Van Den Berg D, Van Allen E, Veluvolu U, Verhaak R, Voet D, Voronina O, Walter V, Walton J, Wan Y, Wang Y, Wang Z, Waring S, Watson I, Weinhold N, Weinstein J, Weisenberger D, White P, Wilkerson M, Wilmott J, Wise L, Wiznerowicz M, Woodman S, Wu C, Wu C, Wu J, Wu Y, Xi R, Xu A, Yang D, Yang L, Yang L, Zack T, Zenklusen J, Zhang H, Zhang J, Zhang W, Zhao X, Zhu J, Zhu K, Zimmer L, Zmuda E, Zou L. Genomic Classification of Cutaneous Melanoma. Cell 2015, 161: 1681-1696. PMID: 26091043, PMCID: PMC4580370, DOI: 10.1016/j.cell.2015.05.044.Peer-Reviewed Original ResearchConceptsGenomic classificationProtein-based analysesComplex structural rearrangementsImmune gene expressionMutant RASGene expressionIntegrative analysisFocal amplificationGenomic alterationsStructural rearrangementsProtein expressionMutant BRAFCell markersExpressionGenesRNADNAMutationsCutaneous melanomaKIT mutationsNF1RASRearrangementEnrichmentLandscapemTORC1 Activation Blocks Braf V600E -Induced Growth Arrest but Is Insufficient for Melanoma Formation
Damsky W, Micevic G, Meeth K, Muthusamy V, Curley DP, Santhanakrishnan M, Erdelyi I, Platt JT, Huang L, Theodosakis N, Zaidi MR, Tighe S, Davies MA, Dankort D, McMahon M, Merlino G, Bardeesy N, Bosenberg M. mTORC1 Activation Blocks Braf V600E -Induced Growth Arrest but Is Insufficient for Melanoma Formation. Cancer Cell 2015, 27: 41-56. PMID: 25584893, PMCID: PMC4295062, DOI: 10.1016/j.ccell.2014.11.014.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsCell Line, TumorCell ProliferationCyclin-Dependent Kinase Inhibitor p16HumansMechanistic Target of Rapamycin Complex 1Mechanistic Target of Rapamycin Complex 2MelanocytesMelanoma, ExperimentalMiceMicroRNAsMolecular Sequence DataMultiprotein ComplexesMutationNevusProtein Serine-Threonine KinasesProto-Oncogene Proteins B-rafSignal TransductionSkin NeoplasmsTOR Serine-Threonine KinasesConceptsMelanoma formationGrowth arrestStable growth arrestMTORC2/AktSTK11 lossCDKN2A lossAkt activationIGF1R signalingMice resultsActivationArrestMTORC2Nevus developmentMTORC1/2SignalingAktMelanocytic nevus developmentMelanomagenesisMTORProgressionCDKN2AMelanocytesInactivationUpregulationComplete progression
2011
β-Catenin Signaling Controls Metastasis in Braf-Activated Pten-Deficient Melanomas
Damsky WE, Curley DP, Santhanakrishnan M, Rosenbaum LE, Platt JT, Rothberg BE, Taketo MM, Dankort D, Rimm DL, McMahon M, Bosenberg M. β-Catenin Signaling Controls Metastasis in Braf-Activated Pten-Deficient Melanomas. Cancer Cell 2011, 20: 741-754. PMID: 22172720, PMCID: PMC3241928, DOI: 10.1016/j.ccr.2011.10.030.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, DifferentiationBenzamidesBeta CateninCell Transformation, NeoplasticColorectal NeoplasmsEnzyme ActivationGene Knockdown TechniquesHumansImatinib MesylateKaplan-Meier EstimateLung NeoplasmsLymphatic MetastasisMelanocytesMelanoma, ExperimentalMiceMice, 129 StrainMice, Inbred C57BLMice, TransgenicPhosphorylationPiperazinesProtein StabilityProto-Oncogene Proteins B-rafProto-Oncogene Proteins c-aktPTEN PhosphohydrolasePyrimidinesSignal TransductionSkin NeoplasmsSplenic NeoplasmsTranscription, GeneticTumor Cells, CulturedConceptsΒ-catenin levelsPI3K/AktLymph nodesMetastatic tumorsFrequent metastasisTumor differentiationMalignant melanomaMAPK/ERKMelanoma metastasesMouse modelControl metastasisHuman melanomaMelanomaMetastasisΒ-catenin stabilizationPTEN lossCentral mediatorMetastasis regulatorsΒ-cateninSpecific changesFunctional implicationsWntLung
2001
Telomere dysfunction and evolution of intestinal carcinoma in mice and humans
Rudolph K, Millard M, Bosenberg M, DePinho R. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nature Genetics 2001, 28: 155-159. PMID: 11381263, DOI: 10.1038/88871.Peer-Reviewed Original ResearchConceptsHuman intestinal neoplasiaProgression of mouseTelomerase activationHuman colorectal carcinogenesisTelomere dysfunctionInitiated lesionsIntestinal carcinomaColorectal carcinogenesisIntestinal neoplasiaHuman colorectalDysfunctionAdvanced stageMalignant transformationTumor progressionChromosomal instabilityColon carcinomaCarcinoma transitionMacroscopic adenomasTransient telomere dysfunctionEarly carcinogenesisCancer initiationHuman cancersTelomerase activityCarcinomaDifferential effects
1993
Juxtacrine cell signaling molecules
Bosenberg M, Massagué J. Juxtacrine cell signaling molecules. Current Opinion In Cell Biology 1993, 5: 832-838. PMID: 7694603, DOI: 10.1016/0955-0674(93)90032-l.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell AdhesionCell Adhesion MoleculesCell MembraneDrosophila ProteinsEpidermal Growth FactorEye ProteinsGrowth SubstancesHematopoietic Cell Growth FactorsHumansMembrane GlycoproteinsNerve Growth FactorsReceptors, Cell SurfaceReceptors, PeptideSignal TransductionStem Cell FactorTumor Necrosis Factor-alphaConceptsCell adhesion moleculeMembrane-anchored growth factorsIntimate cell-cell contactCell-cell contactDiffusible growth factorsAdhesion moleculesGrowth factorTissue developmentIntercellular communicationJuxtacrine interactionsJuxtacrine stimulationClass of moleculesAdjacent cellsCellsRapid progressMoleculesReceptorsBiologistsMaintenanceIdentification