2014
Chemokine receptor Cxcr4 contributes to kidney fibrosis via multiple effectors
Yuan A, Lee Y, Choi U, Moeckel G, Karihaloo A. Chemokine receptor Cxcr4 contributes to kidney fibrosis via multiple effectors. American Journal Of Physiology. Renal Physiology 2014, 308: f459-f472. PMID: 25537742, PMCID: PMC4346747, DOI: 10.1152/ajprenal.00146.2014.Peer-Reviewed Original ResearchConceptsUnilateral ureteral obstructionCXCR4 expressionKidney fibrosisChemokine receptorsFibrotic responseSmooth muscle actin levelsG protein-coupled chemokine receptorsGrowth factorChronic kidney inflammationProgressive tissue injuryChronic kidney diseaseHigh CXCR4 expressionTGF-β1 levelsEffector cell typesProgression of fibrosisScarring/fibrosisFinal common pathwayPlatelet-derived growth factorRenal injuryKidney inflammationObstructed kidneysBone morphogenetic protein-7Renal fibrosisUreteral obstructionKidney disease
2009
Deletion of the Met receptor in the collecting duct decreases renal repair following ureteral obstruction
Ma H, Saenko M, Opuko A, Togawa A, Soda K, Marlier A, Moeckel GW, Cantley LG, Ishibe S. Deletion of the Met receptor in the collecting duct decreases renal repair following ureteral obstruction. Kidney International 2009, 76: 868-876. PMID: 19675527, DOI: 10.1038/ki.2009.304.Peer-Reviewed Original ResearchConceptsUreteral obstructionFibrotic responseKnockout miceMet receptorAcute tubular necrosisPlasminogen activator inhibitor-1Unilateral ureteral obstructionTubular cell proliferationActivator inhibitor-1Conditional knockout miceHepatocyte growth factorKidney injuryRenal injuryTubular necrosisFunctional recoveryInterstitial fibrosisCre miceRenal repairNephron injuryControl littermatesObstructionGrowth factorMiceInhibitor-1Injury