2015
Connective tissue growth factor and integrin αvβ6: A new pair of regulators critical for ductular reaction and biliary fibrosis in mice
Pi L, Robinson P, Jorgensen M, Oh S, Brown A, Weinreb P, Le Trinh T, Yianni P, Liu C, Leask A, Violette S, Scott E, Schultz G, Petersen B. Connective tissue growth factor and integrin αvβ6: A new pair of regulators critical for ductular reaction and biliary fibrosis in mice. Hepatology 2015, 61: 678-691. PMID: 25203810, PMCID: PMC4303530, DOI: 10.1002/hep.27425.Peer-Reviewed Original ResearchMeSH KeywordsAdult Stem CellsAnimalsAntigens, NeoplasmBile Duct NeoplasmsBile Ducts, IntrahepaticCell AdhesionChemical and Drug Induced Liver InjuryCholangiocarcinomaConnective Tissue Growth FactorFemaleFibronectinsHumansIntegrinsLiver CirrhosisMaleMiceMice, KnockoutPyridinesRabbitsRatsTransforming Growth Factor beta1ConceptsConnective tissue growth factorDuctular reactionTissue growth factorIntegrin αvβ6Oval cell activationLiver injuryGrowth factorTamoxifen-inducible Cre-loxP systemCell activationRole of CTGFAlpha-smooth muscle actin stainingRelated liver diseasesSevere liver injuryGreen fluorescent protein reporter miceFibrosis-related genesMuscle actin stainingSirius red stainingPotential therapeutic targetHuman cirrhotic liversEpithelial cell adhesion moleculeDuctular epithelial cellsBiliary fibrosisCre-loxP systemLiver diseaseSerum markers
2014
Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip
Sheng W, Ogunwobi O, Chen T, Zhang J, George T, Liu C, Fan Z. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab On A Chip 2014, 14: 89-98. PMID: 24220648, PMCID: PMC3918168, DOI: 10.1039/c3lc51017d.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, ImmobilizedAntigens, NeoplasmAntineoplastic AgentsCell Adhesion MoleculesCell Line, TumorCell SeparationCell SurvivalEpithelial Cell Adhesion MoleculeHumansLeukocyte Common AntigensMaleMicrofluidic Analytical TechniquesNeoplastic Cells, CirculatingPancreatic NeoplasmsTomography, X-Ray ComputedConceptsHigh-performance microchipsMicromixer structurePresented technologyReal-time monitoringChannel geometryFlow rateTransverse flowCapture efficiencyChipDevicesCell capturePersonalized therapeutic treatmentsTumor cell captureAntibody-coated surfaceGreat promiseSpiked tumor cellsIsolation of CTCsWide rangeCancer patients' blood
2012
Repertoire Enhancement with Adoptively Transferred Female Lymphocytes Controls the Growth of Pre-Implanted Murine Prostate Cancer
Jenq R, Curran M, Goldberg G, Liu C, Allison J, van den Brink M. Repertoire Enhancement with Adoptively Transferred Female Lymphocytes Controls the Growth of Pre-Implanted Murine Prostate Cancer. PLOS ONE 2012, 7: e35222. PMID: 22493742, PMCID: PMC3320876, DOI: 10.1371/journal.pone.0035222.Peer-Reviewed Original ResearchMeSH KeywordsAdenocarcinomaAdultAnimalsAntigens, NeoplasmCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesDEAD-box RNA HelicasesFemaleGraft vs Host DiseaseHumansImmunotherapy, AdoptiveLymphocyte CountMaleMiceMinor Histocompatibility AntigensNeoplasm TransplantationProstatic NeoplasmsSex FactorsWhole-Body IrradiationConceptsCD4 T cellsT cellsProstatic adenocarcinoma cellsAdoptive transferProstate cancerEffective anti-tumor immune responseCancer-reactive T cellsCD8 T cell responsesHigh-affinity T cellsPotential tumor rejection antigensTRAMP-C2 tumor cellsAnti-tumor immune responseAdenocarcinoma cellsExacerbation of graftPresence of CD25Female lymphocytesRegulatory T cellsAdoptive transfer modelReactive T cellsT cell responsesT cell repertoireMurine prostate cancerProstate cancer antigenAdult male hostsTumor rejection antigens
2006
An effective cancer vaccine modality: Lentiviral modification of dendritic cells expressing multiple cancer-specific antigens
Wang B, He J, Liu C, Chang L. An effective cancer vaccine modality: Lentiviral modification of dendritic cells expressing multiple cancer-specific antigens. Vaccine 2006, 24: 3477-3489. PMID: 16530303, PMCID: PMC1850619, DOI: 10.1016/j.vaccine.2006.02.025.Peer-Reviewed Original ResearchConceptsTumor-associated antigensDendritic cellsModification of DCsMultiple tumor-associated antigensStrong anti-tumor responsesReactive dendritic cellsAnti-tumor responseT cell responsesLentiviral vectorsCancer-specific antigensCell antigen 2Tumor-bearing miceThymidine kinase suicide geneDC vaccinesVaccine modalitiesCancer immunotherapyCancer patientsTherapeutic injectionsTherapeutic effectExtended survivalAntigen 2Danger signalsVivo eliminationCell responsesTherapeutic potential