William Cafferty, PhD
Cards
Appointments
Contact Info
About
Copy Link
Titles
Associate Professor of Neurology and of Neuroscience
Appointments
Neurology
Associate Professor on TermPrimaryNeuroscience
Associate Professor on TermSecondary
Other Departments & Organizations
Education & Training
- PhD
- Kings College (2001)
- BS
- Bristol University (1997)
Research
Copy Link
Overview
Spinal cord injury (SCI) results in chronic functional deficits as axotomized central nervous system (CNS) neurons fail to regenerate their axons after trauma due to the inhibitory environment in the mature CNS and the low intrinsic growth capacity of adult CNS neurons. Despite the lack of long distance axon regeneration, partial spontaneous recovery of function is observed sub-acutely in humans and in animal SCI models. Structural plasticity of intact brain and spinal circuitry has been suggested to drive this phenomenon. However, the endogenous molecular mechanisms that drives formation of these de novo anatomical pathways remain unknown, and thus, represent a significant barrier to therapeutic intervention.
In the Cafferty lab we use two broad complimentary approaches to restore function after SCI. We use transcriptomic profiling of functionally defined subsets of intact neurons undergoing functional plasticity within the central motor apparatus to identify novel cell autonomous growth activators. Subsequent in silico and functional in vitro interrogation of these novel pro-axon growth modulators streamlines the identification of lead candidates for transgenic and pharmacological interventions that target these molecular axes to enhance functional axon growth in experimental SCI models. To understand how these new plastic pathways integrate into remaining CNS circuitry we use chronic in vivo two-photon microscopy in awake behaving mice that have undergone partial SCI and experimental therapeutic intervention. Using calcium and voltage imaging we can specifically map de novo circuits and assess their functional impact on defined behaviors via additional probing with chemo/pharmaco/opto-genetics.
Medical Research Interests
ORCID
0000-0001-6263-2167- View Lab Website
Cafferty Lab
Research at a Glance
Yale Co-Authors
Publications Timeline
Research Interests
Stephen Strittmatter, MD, PhD, AB
Sierra Dawn Kauer
Daniel Coman, PhD
David van Dijk, PhD, MSc, BSc
Lawrence Staib, PhD
Spinal Cord Injuries
Publications
2025
REVS: A new open-source platform for high-resolution analysis of rodent wheel running behavior
Bonanno J, O'Brien C, Cafferty W. REVS: A new open-source platform for high-resolution analysis of rodent wheel running behavior. Journal Of Neuroscience Methods 2025, 424: 110581. PMID: 40946866, DOI: 10.1016/j.jneumeth.2025.110581.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsOpen-source systemsOpen-source platformOpen-source hardwareIntegrated data visualizationSeamless blendingData visualizationSoftware platformTemporal featuresData exportProprietary softwareHall-effect sensorsHardwareMetricsBehavioral metricsEffect sensorsSoftwareFlexibility analysisPrincipal component analysisPlatformAssociated with injuryComponent analysisSpinal cord injuryUsersPartial spinal cord injuryExercise physiology
2023
Anatomical Diversity of the Adult Corticospinal Tract Revealed by Single-Cell Transcriptional Profiling
Golan N, Ehrlich D, Bonanno J, O'Brien R, Murillo M, Kauer S, Ravindra N, Van Dijk D, Cafferty W. Anatomical Diversity of the Adult Corticospinal Tract Revealed by Single-Cell Transcriptional Profiling. Journal Of Neuroscience 2023, 43: 7929-7945. PMID: 37748862, PMCID: PMC10669816, DOI: 10.1523/jneurosci.0811-22.2023.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsCorticospinal tract neuronsCorticospinal tractAdult corticospinal tractIrreversible functional deficitsCortical layer 2/3Lumbar spinal cordSpinal cord injuryLayer 5 neuronsClasses of neuronsMolecular heterogeneityAxon collateralizationTract neuronsCord injuryRetrograde labelingMotor pathwaysFemale miceFunctional deficitsLayer 2/3Primary axonsSpinal cordTerminal fieldsNeuron subtypesAdult tractTherapeutic interventionsSingle-cell RNA sequencing
2022
Inositol Polyphosphate-5-Phosphatase K (Inpp5k) Enhances Sprouting of Corticospinal Tract Axons after CNS Trauma
Kauer SD, Fink KL, Li EHF, Evans BP, Golan N, Cafferty W. Inositol Polyphosphate-5-Phosphatase K (Inpp5k) Enhances Sprouting of Corticospinal Tract Axons after CNS Trauma. Journal Of Neuroscience 2022, 42: 2190-2204. PMID: 35135857, PMCID: PMC8936595, DOI: 10.1523/jneurosci.0897-21.2022.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsAdult corticospinal neuronsSpinal cord injuryCorticospinal neuronsCNS neuronsAxon growthCNS traumaCord injuryCorticospinal tractAdult CNS environmentChronic functional deficitsConcomitant functional recoveryCorticospinal tract neuronsNogo receptor 1Corticospinal tract axonsRetinal ganglion cellsRobust axon growthEmbryonic cortical neuronsEmbryonic CNS neuronsCortical strokeContusion injuryNeurologic recoveryTract neuronsSpinal contusionFunctional recoveryCST axons
2016
Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury
Fink KL, Cafferty WB. Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury. Neurotherapeutics 2016, 13: 370-381. PMID: 26846379, PMCID: PMC4824020, DOI: 10.1007/s13311-016-0422-x.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsSpinal cord injuryCentral nervous systemMotor pathwaysFunctional recoveryMotor functionMotor circuitsIntact circuitsIncomplete spinal cord injuryPartial spinal cord injuryAdult central nervous systemCorticospinal tract lesionsLimited spontaneous recoveryPermanent functional impairmentSpontaneous functional recoveryExperimental rodent modelsIntrinsic growth capacityRestoration of functionFine motor behaviorRaphespinal tractsDenervated sideTract lesionsCord injuryRubrospinal tractReticulospinal tractCNS neurons
2015
Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice
Fink KL, Strittmatter SM, Cafferty WB. Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice. Journal Of Neuroscience 2015, 35: 15403-15418. PMID: 26586827, PMCID: PMC4649010, DOI: 10.1523/jneurosci.3165-15.2015.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAmidinesAnalysis of VarianceAnimalsAxonsBiotinCrystallinsDextransDisease Models, AnimalFunctional LateralityGene Expression RegulationGlial Fibrillary Acidic ProteinGPI-Linked ProteinsLuminescent ProteinsMiceMice, Inbred C57BLMice, Transgenicmu-CrystallinsMyelin ProteinsNerve RegenerationNogo Receptor 1Pyramidal TractsReceptors, Cell SurfaceRecovery of FunctionSpinal Cord InjuriesConceptsCorticospinal tractCST axonsTransgenic miceMotor tractsDextran amineFunctional deficitsSpinal cordAxon regenerationSpinal Cord Injury StudySpontaneous axon regenerationSpinal cord traumaNogo receptor 1Permanent functional deficitsPersistent functional deficitsBilateral pyramidotomyDorsal hemisectionMidthoracic cordCord traumaMotor pathwaysAdult CNSCST regenerationInjury studiesLesion siteRegenerating fibersNeural repairGene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury
Zou Y, Stagi M, Wang X, Yigitkanli K, Siegel CS, Nakatsu F, Cafferty WB, Strittmatter SM. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury. Journal Of Neuroscience 2015, 35: 10429-10439. PMID: 26203138, PMCID: PMC4510284, DOI: 10.1523/jneurosci.1718-15.2015.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAnimalsAxonsDisease Models, AnimalGene Knockdown TechniquesImmunohistochemistryInositol Polyphosphate 5-PhosphatasesMiceMice, Inbred C57BLMice, KnockoutNerve RegenerationPhosphoric Monoester HydrolasesRecovery of FunctionReverse Transcriptase Polymerase Chain ReactionSpinal Cord InjuriesConceptsSpinal cord injuryCord injuryEndogenous suppressorAxon regenerationNonoverlapping substrate specificityGenome-wide scaleHigh-throughput functional screensFunctional recoveryAxonal regenerationCNS axon repairSpinal cord injury researchDorsal hemisection injuryMammalian genesPI3K/AKT/mTOR pathwayCNS axon growthAKT/mTOR pathwayLipid phosphataseCorticospinal tract axonsCNS axon regenerationAdult mammalian CNSFunctional screenSubstrate specificityNovel suppressorShRNA resultsINPP5FPlasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury
Siegel CS, Fink KL, Strittmatter SM, Cafferty WB. Plasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury. Journal Of Neuroscience 2015, 35: 1443-1457. PMID: 25632122, PMCID: PMC4308593, DOI: 10.1523/jneurosci.3713-14.2015.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAnimalsDesigner DrugsFunctional LateralityGene Expression RegulationGlial Fibrillary Acidic ProteinLocomotionMaleMiceMice, Inbred C57BLMice, TransgenicMuscle StrengthMyelin ProteinsNeuronal PlasticityNogo ProteinsPsychomotor DisordersPyramidal TractsRaphe NucleiRecovery of FunctionSpinal Cord InjuriesStereotyped BehaviorTime FactorsConceptsSpinal cord injurySpontaneous functional recoveryFunctional recoverySpontaneous recoveryIncomplete spinal cord injuryCorticospinal tract lesionsWeeks of lesionCorticospinal tract injuryNogo receptor 1Nucleus raphe magnusTract injuryRubrospinal projectionsTract lesionsCord injuryRaphe magnusCircuit rearrangementsAdult CNSCircuit plasticityLocomotor functionAdult micePharmacogenetic toolsRed nucleusRubral projectionReceptor 1Extensive sprouting
2014
Human NgR-Fc Decoy Protein via Lumbar Intrathecal Bolus Administration Enhances Recovery from Rat Spinal Cord Contusion
Wang X, Yigitkanli K, Kim CY, Sekine-Konno T, Wirak D, Frieden E, Bhargava A, Maynard G, Cafferty WB, Strittmatter SM. Human NgR-Fc Decoy Protein via Lumbar Intrathecal Bolus Administration Enhances Recovery from Rat Spinal Cord Contusion. Journal Of Neurotrauma 2014, 31: 1955-1966. PMID: 24964223, PMCID: PMC4245872, DOI: 10.1089/neu.2014.3355.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsSpinal cord injuryTraumatic spinal cord injurySpinal cord contusionNeurological recoveryCord contusionRat spinal cord contusionSpinal contusion injuryLumbar intrathecal spaceLumbar spinal cordContinuous intracerebroventricular infusionRodent SCI modelsPercentage of ratsRaphespinal axonsContusion injuryAdministration regimenSCI modelContinuous infusionCord injuryIntracerebroventricular infusionIntrathecal spaceSpinal cordPreclinical modelsEffective treatmentWalking tasksClinical testingDiffusion Tensor Imaging as a Predictor of Locomotor Function after Experimental Spinal Cord Injury and Recovery
Kelley BJ, Harel NY, Kim CY, Papademetris X, Coman D, Wang X, Hasan O, Kaufman A, Globinsky R, Staib LH, Cafferty WB, Hyder F, Strittmatter SM. Diffusion Tensor Imaging as a Predictor of Locomotor Function after Experimental Spinal Cord Injury and Recovery. Journal Of Neurotrauma 2014, 31: 1362-1373. PMID: 24779685, PMCID: PMC4120934, DOI: 10.1089/neu.2013.3238.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsConceptsSpinal cord injuryDiffusion tensor imagingCord injuryAxonal integrityLocomotor functionExperimental spinal cord injuryTraumatic spinal cord injuryFemale Sprague-Dawley ratsTensor imagingFractional anisotropyFunctional recovery assessmentSpinal cord contusionLimited functional recoveryLong-term disabilityQuantitative diffusion tensor imagingRodent SCI modelsSprague-Dawley ratsSpinal cord morphologyWhite matter pathologyCaudal spinal cordWhite matter integrityInjury epicenterMidthoracic laminectomyCord contusionPrimary outcomeAnatomical Plasticity of Adult Brain Is Titrated by Nogo Receptor 1
Akbik F, Bhagat S, Patel P, Cafferty W, Strittmatter S. Anatomical Plasticity of Adult Brain Is Titrated by Nogo Receptor 1. Neuron 2014, 82: 1184-1185. DOI: 10.1016/j.neuron.2014.05.022.Peer-Reviewed Original Research
Academic Achievements & Community Involvement
Copy Link
Honors
honor K99/R00 - Pathway to Independence
05/01/2008National AwardNIH - NINDSDetailsUnited States
Get In Touch
Copy Link