2019
Discordance in the Epithelial Cell-Dendritic Cell Major Histocompatibility Complex Class II Immunoproteome: Implications for Chlamydia Vaccine Development
Karunakaran KP, Yu H, Jiang X, Chan QWT, Foster LJ, Johnson RM, Brunham RC. Discordance in the Epithelial Cell-Dendritic Cell Major Histocompatibility Complex Class II Immunoproteome: Implications for Chlamydia Vaccine Development. The Journal Of Infectious Diseases 2019, 221: 841-850. PMID: 31599954, PMCID: PMC7457330, DOI: 10.1093/infdis/jiz522.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, BacterialBacterial VaccinesCD4-Positive T-LymphocytesCell LineChlamydia InfectionsChlamydia muridarumChlamydia trachomatisDendritic CellsEpithelial CellsEpitopes, T-LymphocyteFemaleHeLa CellsHistocompatibility Antigens Class IHistocompatibility Antigens Class IIHost-Pathogen InteractionsHumansMiceMice, Inbred C57BLPeptidesConceptsCD4 T cellsDendritic cellsT cellsEpithelial cellsProtective immunityEffector phaseClass IChlamydia-specific CD4 T cellsPathogen-specific T cellsClass IIMajor histocompatibility complex (MHC) class II moleculesChlamydia vaccine developmentClearance of ChlamydiaClass II epitopesClass II moleculesMHC class IMucosal epithelial cellsInfected epithelial cellsImmune miceIntracellular bacterial pathogenChlamydia vaccineC trachomatisEpithelial cell linePresent epitopesChlamydia trachomatis
2015
Modeling the transcriptome of genital tract epithelial cells and macrophages in healthy mucosa versus mucosa inflamed by Chlamydia muridarum infection
Johnson RM, Kerr MS. Modeling the transcriptome of genital tract epithelial cells and macrophages in healthy mucosa versus mucosa inflamed by Chlamydia muridarum infection. Pathogens And Disease 2015, 73: ftv100. PMID: 26519447, PMCID: PMC4732027, DOI: 10.1093/femspd/ftv100.Peer-Reviewed Original ResearchConceptsEpithelial cellsLineage-specific differencesGene expression microarray technologyExpression microarray technologyBone marrow-derived macrophagesMarrow-derived macrophagesAdaptive immunityReproductive tract epitheliumCell line responsePrincipal cell typesMicroarray technologyIntracellular bacteriaChlamydia-specific T cellsGenital tract epithelial cellsCell typesBacterial replicationChlamydia muridarum infectionMHC class II moleculesEpithelial requirementTract epithelial cellsClass II moleculesInnate defenseHost defenseCoinhibitory ligandsInflamed/
2014
An atypical CD8 T‐cell response to Chlamydia muridarum genital tract infections includes T cells that produce interleukin‐13
Johnson RM, Kerr MS, Slaven JE. An atypical CD8 T‐cell response to Chlamydia muridarum genital tract infections includes T cells that produce interleukin‐13. Immunology 2014, 142: 248-257. PMID: 24428415, PMCID: PMC4008232, DOI: 10.1111/imm.12248.Peer-Reviewed Original ResearchConceptsGenital tract infectionCD8 T cellsCD8 T cell responsesCD8 T cell clonesT cell responsesTract infectionsT cell clonesT cellsProtective immunityInterleukin-13T helper type 1 cell responsesC. muridarum genital tract infectionChlamydia muridarum Genital Tract InfectionMHC class Ia moleculesCD4 T cellsRole of TNFAntigen-presenting cellsTumor necrosis factorReproductive tract epitheliumClass Ia moleculesCD8 clonesCD8 levelsChlamydia replicationNaive splenocytesIntracellular bacterial pathogen
2013
Perforin Is Detrimental to Controllinγ C. muridarum Replication In Vitro, but Not In Vivo
Johnson RM, Kerr MS, Slaven JE. Perforin Is Detrimental to Controllinγ C. muridarum Replication In Vitro, but Not In Vivo. PLOS ONE 2013, 8: e63340. PMID: 23691028, PMCID: PMC3653963, DOI: 10.1371/journal.pone.0063340.Peer-Reviewed Original ResearchConceptsGenital tract infectionPerforin knockout miceChlamydia replicationTract infectionsEpithelial cellsKnockout miceC. muridarum genital tract infectionChlamydia muridarum Genital Tract InfectionClearance mechanismsVivo clearance mechanismsCD4 T cellsT cell mechanismsT cell-epithelial cell interactionsT cell degranulationNitric oxide productionBacterial clearanceEpithelial productionCell degranulationT cellsSingle-gene knockout miceWeek 7Oxide productionPerforinNitric oxideInfection
2012
PmpG303-311, a Protective Vaccine Epitope That Elicits Persistent Cellular Immune Responses in Chlamydia muridarum-Immune Mice
Johnson RM, Yu H, Kerr MS, Slaven JE, Karunakaran KP, Brunham RC. PmpG303-311, a Protective Vaccine Epitope That Elicits Persistent Cellular Immune Responses in Chlamydia muridarum-Immune Mice. Infection And Immunity 2012, 80: 2204-2211. PMID: 22431650, PMCID: PMC3370596, DOI: 10.1128/iai.06339-11.Peer-Reviewed Original ResearchConceptsGenital tract infectionAntigen-presenting cellsT cell clonesTract infectionsMonths postinfectionImmune responseChlamydia muridarum Genital Tract InfectionProtective CD4 T cell responsesVaccine developmentPrimary genital tract infectionTh1 T cell clonesCD4 T cell responsesCD4 T-cell clonesSplenic antigen-presenting cellsAntigen-presenting cell populationsCell clonesCD4 T cellsT cell responsesCellular immune responsesProtective immune responsePromising vaccine candidateImmune C57BL/6 miceInfected epithelial cellsIrradiated splenocytesUrogenital chlamydiaPlac8-Dependent and Inducible NO Synthase-Dependent Mechanisms Clear Chlamydia muridarum Infections from the Genital Tract
Johnson RM, Kerr MS, Slaven JE. Plac8-Dependent and Inducible NO Synthase-Dependent Mechanisms Clear Chlamydia muridarum Infections from the Genital Tract. The Journal Of Immunology 2012, 188: 1896-1904. PMID: 22238459, PMCID: PMC3303601, DOI: 10.4049/jimmunol.1102764.Peer-Reviewed Original ResearchConceptsGenital tract infectionCD4 T-cell clonesINOS-independent mechanismCD4 T cellsT cell clonesTract infectionsT cellsC. muridarum genital tract infectionCell clonesChlamydia muridarum infectionInducible NO synthase (iNOS) transcriptionT cell mechanismsT cell subsetsClearance of infectionGenital tract epitheliumT cell degranulationCytokine profileCell subsetsCell degranulationGenital tractClear infectionEffector functionsMouse modelNO productionVaccine development
2010
Chlamydia-Specific CD4 T Cell Clones Control Chlamydia muridarum Replication in Epithelial Cells by Nitric Oxide-Dependent and -Independent Mechanisms
Jayarapu K, Kerr M, Ofner S, Johnson RM. Chlamydia-Specific CD4 T Cell Clones Control Chlamydia muridarum Replication in Epithelial Cells by Nitric Oxide-Dependent and -Independent Mechanisms. The Journal Of Immunology 2010, 185: 6911-6920. PMID: 21037093, PMCID: PMC3073083, DOI: 10.4049/jimmunol.1002596.Peer-Reviewed Original ResearchConceptsCD4 T-cell clonesT cell clonesEpithelial NO productionCD4 T cellsChlamydia replicationCell clonesEpithelial cellsT cellsNO productionReproductive tract epithelial cellsT cell-mediated controlT-cell depletion studiesCell depletion studiesCell-mediated controlHuman reproductive tractT cell degranulationMHC class IIMurine genital tractTract epithelial cellsInfected epithelial cellsEpithelial tumor cell linesIntracellular bacterial pathogenBacterial clearanceCell degranulationGenital tract
2009
Chlamydia muridarum-Specific CD4 T-Cell Clones Recognize Infected Reproductive Tract Epithelial Cells in an Interferon-Dependent Fashion
Jayarapu K, Kerr MS, Katschke A, Johnson RM. Chlamydia muridarum-Specific CD4 T-Cell Clones Recognize Infected Reproductive Tract Epithelial Cells in an Interferon-Dependent Fashion. Infection And Immunity 2009, 77: 4469-4479. PMID: 19667042, PMCID: PMC2747947, DOI: 10.1128/iai.00491-09.Peer-Reviewed Original ResearchConceptsCD4 T-cell clonesT cell clonesReproductive tract epithelial cellsCD4 T cell interactionsT cell activationGenital tract infectionCD4 T cellsTract epithelial cellsT cell interactionsEpithelial cellsTract infectionsMHC-IIT cellsChlamydia muridarum Genital Tract InfectionChlamydia-specific CD4 T cellsMajor histocompatibility complex (MHC) class II moleculesIFN-gamma-induced upregulationCell surface MHC-IIExperimental mouse modelSurface MHC-IIClass II moleculesReproductive tract epitheliumTiming of recognitionFuture vaccine developmentChlamydia replication