2024
Cilia structure and intraflagellar transport differentially regulate sensory response dynamics within and between C. elegans chemosensory neurons
Philbrook A, O’Donnell M, Grunenkovaite L, Sengupta P. Cilia structure and intraflagellar transport differentially regulate sensory response dynamics within and between C. elegans chemosensory neurons. PLOS Biology 2024, 22: e3002892. PMID: 39591402, PMCID: PMC11593760, DOI: 10.1371/journal.pbio.3002892.Peer-Reviewed Original ResearchConceptsIntraflagellar transportOrganization of signaling moleculesASH nociceptive neuronsAWA olfactory neuronsCiliary traffickingNociceptive neuronsCilia baseOlfactory neuronsCaenorhabditis elegansOdor responsesSignaling proteinsCilia organizationSensory neuronsCilium structurePrimary ciliaCilia structureSignaling moleculesAcute inhibitionSegregation of receptorsRegulation of responsesChemosensory neuronsNeuron typesCilium lengthNeuronal responsesEctopic branching
2022
Context-dependent reversal of odorant preference is driven by inversion of the response in a single sensory neuron type
Khan M, Hartmann A, O’Donnell M, Piccione M, Pandey A, Chao P, Dwyer N, Bargmann C, Sengupta P. Context-dependent reversal of odorant preference is driven by inversion of the response in a single sensory neuron type. PLOS Biology 2022, 20: e3001677. PMID: 35696430, PMCID: PMC9232122, DOI: 10.1371/journal.pbio.3001677.Peer-Reviewed Original ResearchMeSH KeywordsAlcoholsAnimalsCaenorhabditis elegansOdorantsOlfactory Receptor NeuronsReceptors, OdorantSensory Receptor CellsSmellConceptsSensory neuron types
2020
A neurotransmitter produced by gut bacteria modulates host sensory behaviour
O’Donnell M, Fox B, Chao P, Schroeder F, Sengupta P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 2020, 583: 415-420. PMID: 32555456, PMCID: PMC7853625, DOI: 10.1038/s41586-020-2395-5.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAvoidance LearningCaenorhabditis elegansCaenorhabditis elegans ProteinsFeeding BehaviorGastrointestinal MicrobiomeIntestinesMetabolomicsMutationNeurotransmitter AgentsOctanolsOctopamineProvidenciaReceptors, Biogenic AmineReceptors, G-Protein-CoupledSensory Receptor CellsSmellTyramineTyrosine DecarboxylaseConceptsTyramine biosynthesisFood choice assaysASH nociceptive neuronsDiverse organismsCaenorhabditis elegansMutualistic relationshipComplex communitiesChoice assaysMechanistic basisHost behaviourOlfactory responsesPhysiological relevanceOctopamine receptorsGut bacteriaElegansBioactive neurotransmittersBacteriaBiosynthesisHost controlGenesNervous system activitySensory behaviorsOctopamineNociceptive neuronsProvidencia
2018
Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans
O’Donnell M, Chao P, Kammenga J, Sengupta P. Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLOS Genetics 2018, 14: e1007213. PMID: 29415022, PMCID: PMC5819832, DOI: 10.1371/journal.pgen.1007213.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAnimalsAnimals, Genetically ModifiedBrainCaenorhabditis elegansCaenorhabditis elegans ProteinsGene Expression Regulation, DevelopmentalIntestinal MucosaIntestinesMechanistic Target of Rapamycin Complex 2Neuronal PlasticityPhenotypeRapamycin-Insensitive Companion of mTOR ProteinSensory Receptor CellsSignal TransductionTemperatureConceptsQuantitative trait lociDauer larval stageTarget of rapamycinNematode C. elegansExternal cuesInsulin-like peptidesNeuronal functionDAF-7Phenotypic plasticityDaf-28Developmental decisionsC. elegansTrait lociCellular stressorsBacterial foodGenetic variationForaging behaviorRictor/Reproductive growthLarval developmentEnvironmental cuesNeuroendocrine gene expressionGene expressionLarval stagesFood signals
2015
Feeding state-dependent regulation of developmental plasticity via CaMKI and neuroendocrine signaling
Neal S, Takeishi A, O'Donnell M, Park J, Hong M, Butcher R, Kim K, Sengupta P. Feeding state-dependent regulation of developmental plasticity via CaMKI and neuroendocrine signaling. ELife 2015, 4: e10110. PMID: 26335407, PMCID: PMC4558564, DOI: 10.7554/elife.10110.Peer-Reviewed Original ResearchConceptsNeuroendocrine signalingDevelopmental plasticityInsulin-like peptide genesDynamic subcellular localizationDauer decisionDauer formationILP genesDauer stageDevelopmental decisionsSubcellular localizationNutrient availabilityState-dependent regulationPeptide genesReproductive cycleUnknown mechanismCaMKICMK-1SignalingGenesSensory neuronsPlasticityExpressionAWCCaenorhabditisSmall neuronal networks