2021
Cellular Adaptations to Cytoplasmic Mg2+ Limitation
Groisman EA, Chan C. Cellular Adaptations to Cytoplasmic Mg2+ Limitation. Annual Review Of Microbiology 2021, 75: 649-672. PMID: 34623895, DOI: 10.1146/annurev-micro-020518-115606.Peer-Reviewed Original ResearchConceptsCytoplasmic MgLeader regionATP-dependent proteaseTranscriptional regulator PhoPAbundant divalent cationOpen reading frameActivity of ribosomesSimilar adaptation strategiesRegulated proteolysisExpression of proteinsRegulator PhoPMicrobial speciesReading frameCellular adaptationDifferent genesCoding regionsBacterial speciesProtein synthesisSpeciesProteinAbundanceDivalent cationsExpressionCytoplasmic Mg2Enzymatic reactions
2012
The Impact of Differential Regulation on Bacterial Speciation
Groisman E. The Impact of Differential Regulation on Bacterial Speciation. 2012, 109-114. DOI: 10.1128/9781555818470.ch15.Peer-Reviewed Original ResearchBacterial speciesGene regulatory strategiesRelated bacterial speciesResistance proteinAmino acid sequenceEukaryotic speciesRelated speciesBacterial speciationRelated organismsIndividual speciesRegulatory proteinsAcid sequenceBacterial behaviorEnteric speciesGenetic differencesGenetic scenariosDifferential regulationResistance genesEscherichia coliSpeciesEconomic importanceProteinSalmonella entericaFamily EnterobacteriaceaeOrganisms
2009
Evolution of Transcriptional Regulatory Circuits in Bacteria
Perez JC, Groisman EA. Evolution of Transcriptional Regulatory Circuits in Bacteria. Cell 2009, 138: 233-244. PMID: 19632175, PMCID: PMC2726713, DOI: 10.1016/j.cell.2009.07.002.Peer-Reviewed Original ResearchConceptsTranscription factorsRegulatory circuitsOrthologous transcription factorsBacterial regulatory circuitsAncestral transcription factorTranscriptional regulatory circuitsDistinct gene setsHorizontal gene transferSpecies-specific genesEukaryotic speciesPromoter structureRelated organismsGene setsRegulatory differencesGene transferGenesCircuit evolutionBacteriaOrganismsRewiringSpeciesDivergenceEvolutionExpressionCuesEvolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis
Perez JC, Shin D, Zwir I, Latifi T, Hadley TJ, Groisman EA. Evolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis. PLOS Genetics 2009, 5: e1000428. PMID: 19300486, PMCID: PMC2650801, DOI: 10.1371/journal.pgen.1000428.Peer-Reviewed Original ResearchConceptsRegulatory proteinsSpecies-specific traitsHorizontal gene transferDifferent gene setsSpecies-specific targetsPhoP proteinTranscriptional rewiringPhoP regulonRelated organismsPhoPQ operonGene setsVariable membersCell envelopeProtein activityRegulonBacterial speciesGene transferSpeciesProteinPhoPFamily EnterobacteriaceaeGenesVirulenceHomeostasisWidespread effects
2006
Identification of the lipopolysaccharide modifications controlled by the Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III)
Nishino K, Hsu FF, Turk J, Cromie MJ, Wösten MM, Groisman EA. Identification of the lipopolysaccharide modifications controlled by the Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III). Molecular Microbiology 2006, 61: 645-654. PMID: 16803591, PMCID: PMC1618816, DOI: 10.1111/j.1365-2958.2006.05273.x.Peer-Reviewed Original ResearchMeSH KeywordsAluminumBacterial ProteinsBase SequenceDrug Resistance, BacterialEscherichia coli ProteinsGene Expression Regulation, BacterialIronLipid ALipopolysaccharidesMolecular Sequence DataMutationPeriplasmPhosphoric Monoester HydrolasesPhosphorylationPolymyxin BSalmonella typhimuriumSoil MicrobiologyTranscription FactorsConceptsPmrA/PmrB systemGram-negative bacterial speciesNon-host environmentsPmrA/PmrBWild-type strainSalmonella enterica serovar TyphimuriumEnterica serovar TyphimuriumOuter membraneLipopolysaccharide modificationBacterial speciesCovalent modificationResistance genesSerovar TyphimuriumOxygen-dependent killingPmrAEssential metalsHomeostatic mechanismsSalmonella survivalMutantsDephosphorylationGenesSpeciesProteinMajor constituentsIdentification
2002
Fe(III)‐mediated cellular toxicity
Chamnongpol S, Dodson W, Cromie MJ, Harris ZL, Groisman EA. Fe(III)‐mediated cellular toxicity. Molecular Microbiology 2002, 45: 711-719. PMID: 12139617, DOI: 10.1046/j.1365-2958.2002.03041.x.Peer-Reviewed Original ResearchConceptsIsogenic wild-type strainSignal transduction systemWild-type strainGram-negative speciesPmrA mutantOuter membraneIron-mediated toxicityTransduction systemMicrobicidal activityBacterial survivalMajor regulatorCell deathPmrA geneIron homeostasisMutantsEscherichia coliSalmonella mutantsDeleterious metalsCellular toxicitySalmonella entericaExcellent biocatalystAnaerobic conditionsGenesRegulatorSpecies
2000
Lateral gene transfer and the nature of bacterial innovation
Ochman H, Lawrence J, Groisman E. Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405: 299-304. PMID: 10830951, DOI: 10.1038/35012500.Peer-Reviewed Original ResearchConceptsLateral gene transferGene transferHorizontal gene transferBacterial innovationDynamic genomeGenetic diversityAcquisition of sequencesGenetic informationLateral transferBacterial speciesPathogenic characterEukaryotesGenomeChromosomesOrganismsSpeciesDNADiversityBacteriaSequenceSubstantial amount
1998
Seeking the genetic basis of phenotypic differences among bacterial species
Ochman H, Groisman E. Seeking the genetic basis of phenotypic differences among bacterial species. 1998, 221-235. DOI: 10.1007/978-3-0348-8948-3_12.Peer-Reviewed Original ResearchEnteric bacteria Escherichia coliBacterial speciesSpecies-specific genesSpecies-specific charactersGene complementSole carbon sourceDNA regionsPhenotypic charactersGenetic basisAllelic variationBacteria Escherichia coliPhenotypic differencesEscherichia coliSpeciesSalmonella entericaCarbon sourceGenesMicrobesCertain compoundsColiObserved differencesPhysiologySequenceEntericaCharacter
1994
How bacteria resist killing by host-defense peptides
Groisman E. How bacteria resist killing by host-defense peptides. Trends In Microbiology 1994, 2: 444-449. PMID: 7866702, DOI: 10.1016/0966-842x(94)90802-8.Peer-Reviewed Original ResearchHow to become a pathogen
Groisman E, Ochman H. How to become a pathogen. Trends In Microbiology 1994, 2: 289-294. PMID: 7981972, DOI: 10.1016/0966-842x(94)90006-x.Peer-Reviewed Original ResearchThe origin and evolution of species differences in Escherichia coli and Salmonella typhimurium
Ochman H, Groisman EA. The origin and evolution of species differences in Escherichia coli and Salmonella typhimurium. EXS 1994, 69: 479-493. PMID: 7994120, DOI: 10.1007/978-3-0348-7527-1_27.Peer-Reviewed Original ResearchConceptsSpecies-specific sequencesSalmonella chromosomeEscherichia coliCodon usage patternsOpen reading frameHost epithelial cellsCommon ancestorMap positionPhenotypic charactersReading frameBase compositionHorizontal transferSalmonella typhimuriumMutant strainGenetic differencesEnteric speciesBacterial speciesGenomePoint mutationsPhenotypic characteristicsSpeciesCorresponding regionChromosomesSpecies differencesEpithelial cells
1993
Molecular, functional, and evolutionary analysis of sequences specific to Salmonella.
Groisman EA, Sturmoski MA, Solomon FR, Lin R, Ochman H. Molecular, functional, and evolutionary analysis of sequences specific to Salmonella. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 1033-1037. PMID: 8430070, PMCID: PMC45805, DOI: 10.1073/pnas.90.3.1033.Peer-Reviewed Original ResearchConceptsAtypical base compositionIndependent evolutionary eventsPhenotypic characteristicsOpen reading frameLac gene fusionsWild-type parentLysR familyEvolutionary eventsDeletion strainEvolutionary analysisTranscriptional regulatorsReading frameSalmonella genomeNucleotide sequenceBase compositionHorizontal transferDNA fragmentsGene fusionsBacterial speciesEnteric bacteriaStructural similaritySpeciesVirulenceSequenceUnprecedented array