Skip to Main Content

Erdem Karatekin, PhD

Associate Professor Tenure

Contact Information

Erdem Karatekin, PhD

Research Summary

We study cell membrane dynamics and how they relate to cellular function. Cell membranes constantly undergo changes in shape, area, and tension. Cellular activity, such as exocytosis and endocytosis, generates and is regulated by membrane tension gradients, which drive membrane flows. We study mechanisms governing membrane fusion, fission, and membrane flows at the molecular and cellular levels, with the broad goal of understanding how these processes influence one another and are linked to higher physiologic functions.

We focus on three broad areas:

  1. Mechanisms of neurotransmitter and hormone release.
  2. Dynamics of cell membrane tension and membrane turnover.
  3. Novel sub-cellular protein localization and membrane fission mechanisms.

Specialized Terms: Membrane fusion; Exocytosis; Secretory vesicle dynamics; Fluorescence microscopy; Image analysis; Microfluidics; Supported bilayers; Proteoliposomes

Extensive Research Description

1) Mechanisms of neurotransmitter and hormone release. Calcium-triggered fusion of cargo-laden vesicles with the plasma membrane releases neurotransmitters and hormones. The initial ~1-3 nm wide connection between the fusing membranes (the fusion pore), can flicker open-closed before resealing or dilating. Pore flickering impacts releasable cargo size, release kinetics, and vesicle recycling. Components of the release machinery are known, but how calcium entry drives membrane fusion and mechanisms regulating fusion pore dynamics are poorly understood. We are studying mechanisms contributing to fusion pore regulation and release kinetics in conventional synapses, and the unique features of hair cell synaptic transmission which, different from conventional synapses, relies on a large protein called Otoferlin for neurotransmitter release by poorly-understood mechanisms.

2) Dynamics of cell membrane tension and membrane turnover: Exocytosis and endocytosis generate and are regulated by membrane tension gradients. Such gradients drive membrane flows, but how rapidly plasma membrane flow can relax tension gradients is controversial. We discovered that membrane tension can propagate at vastly different speeds depending on cell type. In bipolar neuronal terminals specialized for rapid vesicle turnover, membrane tension equilibrates within seconds, whereas it does not propagate in neuroendocrine adrenal chromaffin cells. Stimulation of exocytosis causes a rapid, global decrease in the synaptic terminal membrane tension, which recovers slowly due to endocytosis. Thus, membrane flow and tension equilibration may be adapted to distinct membrane recycling requirements. We are currently trying to elucidate the molecular and biophysical mechanisms regulating cell membrane tension propagation and membrane flows and how such flows affect the spatio-temporal coupling between exocytosis and endocytosis.

3) Novel sub-cellular protein localization and membrane fission mechanisms. How do cellular components localize to specific sites and how does membrane fission occur in bacteria? Only a few mechanisms have been proposed for the former and virtually nothing was known about the latter. We discovered a new mechanism utilized by a protein called FisB to localize to a highly curved membrane neck in B. subtilis cells during formation of stress-resistant spores, relying solely on its tendency to form trans-complexes bridging membranes, homo-oligomerization, and the cell geometry. After localizing to the membrane neck, FisB promotes membrane fission, but only if the membrane tension is sufficiently high. High membrane tension is provided by energy-intensive DNA packing into the small forespore compartment that inflates it. In future studies, we will explore how lipids and other components are transported across the membrane compartments that form during sporulation.

Coauthors

Research Interests

Biophysics; Exocytosis; Membrane Fusion; Microscopy, Fluorescence; Molecular Biology; Synaptic Transmission; Neurophysiology; Physiology; Bacterial Physiological Phenomena; Secretory Vesicles

Selected Publications

  • LEMONADE: Lego-like membrane tension analyzer based on self-assembled DNA elastic networksYan Q, Liu L, Karatekin E, Lin C. LEMONADE: Lego-like membrane tension analyzer based on self-assembled DNA elastic networks Biophysical Journal 2023, 122: 365a. DOI: 10.1016/j.bpj.2022.11.2014.
  • FisB relies on homo-oligomerization and lipid binding to catalyze membrane fission in bacteriaLandajuela A, Braun M, Braun M, Rodrigues C, Rodrigues C, Martínez-Calvo A, Martínez-Calvo A, Doan T, Doan T, Horenkamp F, Horenkamp F, Andronicos A, Andronicos A, Shteyn V, Shteyn V, Williams N, Williams N, Lin C, Wingreen N, Wingreen N, Rudner D, Rudner D, Karatekin E. FisB relies on homo-oligomerization and lipid binding to catalyze membrane fission in bacteria Biophysical Journal 2022, 121: 9a. DOI: 10.1016/j.bpj.2021.11.2658.
  • Polybasic patches in both C2 domains of synaptotagmin-1 are required for evoked neurotransmitter releaseWu Z, Tsemperouli M, Ma L, Courtney N, Zhu J, Zhang Y, Chapman E, Karatekin E. Polybasic patches in both C2 domains of synaptotagmin-1 are required for evoked neurotransmitter release Biophysical Journal 2022, 121: 293a. DOI: 10.1016/j.bpj.2021.11.1283.
  • Stepwise and cooperative membrane binding and tethering of extended synaptotagmins revealed by optical tweezersGe J, Bian X, Ma L, Cai Y, Li Y, Yang J, Karatekin E, De Camilli P, Zhang Y. Stepwise and cooperative membrane binding and tethering of extended synaptotagmins revealed by optical tweezers Biophysical Journal 2022, 121: 313a. DOI: 10.1016/j.bpj.2021.11.1196.
  • Rapid membrane flow at a presynaptic terminalPerez C, Dudzinski N, Rouches M, Machta B, Zenisek D, Karatekin E. Rapid membrane flow at a presynaptic terminal Biophysical Journal 2022, 121: 230a. DOI: 10.1016/j.bpj.2021.11.1599.
  • The Bacterial Membrane Fission Protein FisB Requires Homo-Oligomerization and Lipid-Binding to Catalyze Membrane ScissionLandajuela A, Braun M, Braun M, Rodrigues C, Rodrigues C, Doan T, Doan T, Horenkamp F, Horenkamp F, Andronicos A, Andronicos A, Shteyn V, Shteyn V, Williams N, Williams N, Lin C, Rudner D, Rudner D, Karatekin E. The Bacterial Membrane Fission Protein FisB Requires Homo-Oligomerization and Lipid-Binding to Catalyze Membrane Scission Biophysical Journal 2021, 120: 322a. DOI: 10.1016/j.bpj.2020.11.2033.
  • Dynamics of Membrane Tension and Synaptic Vesicle RecyclingPerez C, Dudzinski N, Rouches M, Machta B, Zenisek D, Karatekin E. Dynamics of Membrane Tension and Synaptic Vesicle Recycling Biophysical Journal 2021, 120: 323a. DOI: 10.1016/j.bpj.2020.11.2037.
  • Fisb-Lipid Interactions During Sporulation in Bacillus SubtilisBraun M, Landajuela A, Rodrigues C, Doan T, Rudner D, Karatekin E. Fisb-Lipid Interactions During Sporulation in Bacillus Subtilis Biophysical Journal 2020, 118: 557a. DOI: 10.1016/j.bpj.2019.11.3044.
  • FisB Mediated Membrane Fission During Sporulation in Bacillus subtilisLandajuela A, Braun M, Rodrigues C, Doan T, Rudner D, Karatekin E. FisB Mediated Membrane Fission During Sporulation in Bacillus subtilis Biophysical Journal 2020, 118: 185a. DOI: 10.1016/j.bpj.2019.11.1128.
  • A Polybasic Patch on Synaptotagmin-1 C2A Domain is Essential for Evoked Release and Dilation of Fusion PoresWu Z, Ma L, Zhu J, Courtney N, Zhang Y, Chapman E, Karatekin E. A Polybasic Patch on Synaptotagmin-1 C2A Domain is Essential for Evoked Release and Dilation of Fusion Pores Biophysical Journal 2020, 118: 400a. DOI: 10.1016/j.bpj.2019.11.2270.
  • Facile Membrane Flow and Tension Equilibration at a Presynaptic Nerve TerminalPerez C, Dudzinski N, Rouches M, Matcha B, Zenisek D, Karatekin E. Facile Membrane Flow and Tension Equilibration at a Presynaptic Nerve Terminal Biophysical Journal 2020, 118: 232a. DOI: 10.1016/j.bpj.2019.11.1372.
  • Fusion Pores Are Cooperatively Dilated by the Neuronal Calcium Sensor Syt1 and SNARE Proteins in a Mechanical Lever ActionDharan N, Thiyagarajan S, Wu Z, Karatekin E, O'Shaughnessy B. Fusion Pores Are Cooperatively Dilated by the Neuronal Calcium Sensor Syt1 and SNARE Proteins in a Mechanical Lever Action Biophysical Journal 2020, 118: 488a-489a. DOI: 10.1016/j.bpj.2019.11.2703.
  • Investigating Membrane Tension Dynamics in the Neuronal Presynaptic TerminalDudzinski N, Zenisek D, Karatekin E. Investigating Membrane Tension Dynamics in the Neuronal Presynaptic Terminal Biophysical Journal 2019, 116: 313a-314a. DOI: 10.1016/j.bpj.2018.11.1699.
  • Fusion Pore Dilation by Synaptotagmin-1Wu Z, Dharan N, Thiyagarajan S, O'Shaughnessy B, Karatekin E. Fusion Pore Dilation by Synaptotagmin-1 Biophysical Journal 2019, 116: 526a. DOI: 10.1016/j.bpj.2018.11.2834.
  • Deciphering the Role of FisB during Sporulation of Bacillus Subtilis through MutagenesisGeorgieva A, Landajuela A, Karatekin E. Deciphering the Role of FisB during Sporulation of Bacillus Subtilis through Mutagenesis Biophysical Journal 2018, 114: 73a. DOI: 10.1016/j.bpj.2017.11.446.
  • Dilation of Fusion Pores by Synaptotagmin-1 C2AB DomainsWu Z, Ma L, Zhang Y, Karatekin E. Dilation of Fusion Pores by Synaptotagmin-1 C2AB Domains Biophysical Journal 2018, 114: 282a. DOI: 10.1016/j.bpj.2017.11.1621.
  • Two Isoforms of Myosin-II Cooperate to Organize the Fission Yeast Cytokinetic Ring for Maximal Tension ProductionWang S, Chin H, Thiyagarajan S, Karatekin E, Pollard T, O'Shaughnessy B. Two Isoforms of Myosin-II Cooperate to Organize the Fission Yeast Cytokinetic Ring for Maximal Tension Production Biophysical Journal 2018, 114: 654a. DOI: 10.1016/j.bpj.2017.11.3533.
  • Fission Yeast Contractile Ring Tension Increases ∼2-Fold Throughout Constriction and Regulates Septum Closure but does not Set the Constriction RateThiyagarajan S, Chin H, Karatekin E, Pollard T, O'Shaughnessy B. Fission Yeast Contractile Ring Tension Increases ∼2-Fold Throughout Constriction and Regulates Septum Closure but does not Set the Constriction Rate Biophysical Journal 2017, 112: 30a. DOI: 10.1016/j.bpj.2016.11.196.
  • Dilation of Fusion Pores by SNARE Protein CrowdingWu Z, Bello O, Thiyagarajan S, Auclair S, Vennekate W, Krishnakumar S, O'shaughnessy B, Karatekin E. Dilation of Fusion Pores by SNARE Protein Crowding Biophysical Journal 2017, 112: 92a. DOI: 10.1016/j.bpj.2016.11.542.
  • Effects of Membrane Tension on Snare-Mediated Single Fusion PoresDudzinski N, Karatekin E. Effects of Membrane Tension on Snare-Mediated Single Fusion Pores Biophysical Journal 2017, 112: 397a. DOI: 10.1016/j.bpj.2016.11.2153.
  • Optimizing Excitation Polarization to Probe Fusion Pore Dynamics using TIRF MicroscopyHancock K, Nikolaus J, Karatekin E, Baddeley D. Optimizing Excitation Polarization to Probe Fusion Pore Dynamics using TIRF Microscopy Biophysical Journal 2017, 112: 81a. DOI: 10.1016/j.bpj.2016.11.481.
  • Role of trans to cis Transition in Viral Fusion Pore DilationAlcott B, Wu Z, Bircher J, Karatekin E, Shaughnessy B. Role of trans to cis Transition in Viral Fusion Pore Dilation Biophysical Journal 2017, 112: 79a. DOI: 10.1016/j.bpj.2016.11.474.
  • Snare Proteins Entropically Expand Membrane Fusion PoresThiyagarajan S, Wu Z, Bello O, Auclair S, Vennekate W, Krishnakumar S, Karatekin E, O'Shaughnessy B. Snare Proteins Entropically Expand Membrane Fusion Pores Biophysical Journal 2017, 112: 394a. DOI: 10.1016/j.bpj.2016.11.2141.
  • SNARE-mediated Fusion of Single Proteoliposomes with Tethered Supported Bilayers in a Microfluidic Flow Cell Monitored by Polarized TIRF MicroscopyNikolaus J, Karatekin E. SNARE-mediated Fusion of Single Proteoliposomes with Tethered Supported Bilayers in a Microfluidic Flow Cell Monitored by Polarized TIRF Microscopy Journal Of Visualized Experiments 2016 DOI: 10.3791/54349-v.
  • Two Isoforms of Myosin-II Account for the Tension of the Fission Yeast Cytokinetic RingWang S, Chin H, Karatekin E, Pollard T, O'Shaughnessy B. Two Isoforms of Myosin-II Account for the Tension of the Fission Yeast Cytokinetic Ring Biophysical Journal 2016, 110: 618a. DOI: 10.1016/j.bpj.2015.11.3317.
  • SNARE-Mediated Transient Fusion of Liposomes to Supported Bilayers Probed by Two-Color pTIRFMNikolaus J, Stratton B, Warner J, Wu Z, Wei G, Wagnon E, Baddeley D, O'Shaughnessy B, Karatekin E. SNARE-Mediated Transient Fusion of Liposomes to Supported Bilayers Probed by Two-Color pTIRFM Biophysical Journal 2016, 110: 250a. DOI: 10.1016/j.bpj.2015.11.1374.
  • Fusion Between v-SNARE Nanodiscs and “Flipped” t-SNARE Cells: Control of Fusion Pore Nucleation and Lifetimes by SNARE Protein Transmembrane DomainsWu Z, Auclair S, Bello O, Vennekate W, Dudzinski N, Krishnakumar S, Karatekin E. Fusion Between v-SNARE Nanodiscs and “Flipped” t-SNARE Cells: Control of Fusion Pore Nucleation and Lifetimes by SNARE Protein Transmembrane Domains Biophysical Journal 2016, 110: 430a. DOI: 10.1016/j.bpj.2015.11.2321.
  • Measurements and Simulations of the Fission Yeast Cytokinetic Ring Tension during ConstrictionChin H, Karatekin E, Pollard T, O'shaughnessy B. Measurements and Simulations of the Fission Yeast Cytokinetic Ring Tension during Constriction Biophysical Journal 2015, 108: 26a. DOI: 10.1016/j.bpj.2014.11.165.
  • Snare Mediated Fusion with Membrane Tension ControlNikolaus J, Karatekin E. Snare Mediated Fusion with Membrane Tension Control Biophysical Journal 2015, 108: 408a-409a. DOI: 10.1016/j.bpj.2014.11.2239.
  • Fusion Fore Dilation by Snare ProteinsWu Z, Bello O, Auclair S, Vennekate W, Krishnakumar S, Karatekin E. Fusion Fore Dilation by Snare Proteins Biophysical Journal 2015, 108: 408a. DOI: 10.1016/j.bpj.2014.11.2237.
  • Viral Membrane Fusion at Single Pore ResolutionAlcott B, Wu Z, O'shaughnessy B, Karatekin E. Viral Membrane Fusion at Single Pore Resolution Biophysical Journal 2015, 108: 406a. DOI: 10.1016/j.bpj.2014.11.2228.
  • Role of FisB-Cardiolipin Interactions in Membrane Fission during Sporulation in Bacillus SubtilisBraun M, Rodrigues C, Rudner D, Karatekin E. Role of FisB-Cardiolipin Interactions in Membrane Fission during Sporulation in Bacillus Subtilis Biophysical Journal 2015, 108: 382a. DOI: 10.1016/j.bpj.2014.11.2093.
  • Control of Fusion Pore Nucleation and Dynamics by SNARE Protein Transmembrane DomainsWu Z, Auclair S, Bello O, Vennekate W, Krishnakumar S, Karatekin E. Control of Fusion Pore Nucleation and Dynamics by SNARE Protein Transmembrane Domains Biophysical Journal 2015, 108: 408a. DOI: 10.1016/j.bpj.2014.11.2238.
  • Collective Action of SNAREpins Exerts Forces between Membranes that Activate FusionMostafavi H, Stratton B, Warner J, Karatekin E, O'shaughnessy B. Collective Action of SNAREpins Exerts Forces between Membranes that Activate Fusion Biophysical Journal 2015, 108: 409a. DOI: 10.1016/j.bpj.2014.11.2240.
  • FisB Mediated Membrane Fission During Sporulation in Bacillus SubtilisBraun M, Rodrigues C, Doan T, Coleman J, Rudner D, Karatekin E. FisB Mediated Membrane Fission During Sporulation in Bacillus Subtilis Biophysical Journal 2014, 106: 524a. DOI: 10.1016/j.bpj.2013.11.2923.
  • Experimental Measurement and Simulations of the Cytokinetic Ring Tension in Fission YeastChin H, Stachowiak M, Laplante C, Karatekin E, Pollard T, O'Shaughnessy B. Experimental Measurement and Simulations of the Cytokinetic Ring Tension in Fission Yeast Biophysical Journal 2014, 106: 177a. DOI: 10.1016/j.bpj.2013.11.1003.
  • Waiting Times for Fusion Depend on the Number of Snares at the Fusion SiteMostafavi H, Stratton B, Warner J, Karatekin E, O'Shaughnessy B. Waiting Times for Fusion Depend on the Number of Snares at the Fusion Site Biophysical Journal 2014, 106: 504a. DOI: 10.1016/j.bpj.2013.11.2822.
  • Cholesterol Promotes Opening of the SNARE-Mediated Fusion PoreStratton B, Wu Z, Warner J, Wei G, Wagnon E, Karatekin E, O'Shaughnessy B. Cholesterol Promotes Opening of the SNARE-Mediated Fusion Pore Biophysical Journal 2014, 106: 30a-31a. DOI: 10.1016/j.bpj.2013.11.240.
  • Direct Detection of Reconstituted, Snare-Mediated Fusion Pore DynamicsWu Z, Karatekin E. Direct Detection of Reconstituted, Snare-Mediated Fusion Pore Dynamics Biophysical Journal 2014, 106: 506a. DOI: 10.1016/j.bpj.2013.11.2829.
  • SNARE-Mediated Fusion Pore Dynamics from Quantitative TIRF MicroscopyStratton B, Wu Z, Warner J, Wei G, Karatekin E, O'Shaughnessy B. SNARE-Mediated Fusion Pore Dynamics from Quantitative TIRF Microscopy Biophysical Journal 2013, 104: 88a. DOI: 10.1016/j.bpj.2012.11.530.
  • SNARE-Mediated Fusion Pore Dynamics from Quantitative TIRF MicroscopyStratton B, Warner J, Wei G, Chong H, Karatekin E, O'Shaughnessy B. SNARE-Mediated Fusion Pore Dynamics from Quantitative TIRF Microscopy Biophysical Journal 2012, 102: 498a. DOI: 10.1016/j.bpj.2011.11.2728.
  • Cooperativity of SNARE Complexes in Membrane Fusion: Mechanisms of SNARE Cluster-Mediated Docking and FusionWarner J, Stratton B, Karatekin E, O'Shaughnessy B. Cooperativity of SNARE Complexes in Membrane Fusion: Mechanisms of SNARE Cluster-Mediated Docking and Fusion Biophysical Journal 2012, 102: 498a-499a. DOI: 10.1016/j.bpj.2011.11.2729.
  • Back Cover: Coupling Amperometry and Total Internal Reflection Fluorescence Microscopy at ITO Surfaces for Monitoring Exocytosis of Single Vesicles (Angew. Chem. Int. Ed. 22/2011)Meunier A, Jouannot O, Fulcrand R, Fanget I, Bretou M, Karatekin E, Arbault S, Guille M, Darchen F, Lemaître F, Amatore C. Back Cover: Coupling Amperometry and Total Internal Reflection Fluorescence Microscopy at ITO Surfaces for Monitoring Exocytosis of Single Vesicles (Angew. Chem. Int. Ed. 22/2011) Angewandte Chemie International Edition 2011, 50: n/a-n/a. DOI: 10.1002/anie.201102239.
  • Coupling Amperometry and Total Internal Reflection Fluorescence Microscopy at ITO Surfaces for Monitoring Exocytosis of Single VesiclesMeunier A, Jouannot O, Fulcrand R, Fanget I, Bretou M, Karatekin E, Arbault S, Guille M, Darchen F, Lemaître F, Amatore C. Coupling Amperometry and Total Internal Reflection Fluorescence Microscopy at ITO Surfaces for Monitoring Exocytosis of Single Vesicles Angewandte Chemie 2011, 123: 5187-5190. DOI: 10.1002/ange.201101148.
  • Rücktitelbild: Coupling Amperometry and Total Internal Reflection Fluorescence Microscopy at ITO Surfaces for Monitoring Exocytosis of Single Vesicles (Angew. Chem. 22/2011)Meunier A, Jouannot O, Fulcrand R, Fanget I, Bretou M, Karatekin E, Arbault S, Guille M, Darchen F, Lemaître F, Amatore C. Rücktitelbild: Coupling Amperometry and Total Internal Reflection Fluorescence Microscopy at ITO Surfaces for Monitoring Exocytosis of Single Vesicles (Angew. Chem. 22/2011) Angewandte Chemie 2011, 123: n/a-n/a. DOI: 10.1002/ange.201102239.
  • Visualizing Release of Single Fluorophores at Membrane Fusion SitesKaratekin E, Gohlke A, Smith M, Vavylonis D, Rothman J. Visualizing Release of Single Fluorophores at Membrane Fusion Sites Biophysical Journal 2011, 100: 185a. DOI: 10.1016/j.bpj.2010.12.1230.
  • ChemInform Abstract: Electron Spin Polarization and Time‐Resolved Electron Paramagnetic Resonance: Applications to the Paradigms of Molecular and Supramolecular Photochemistry.Turro N, Kleinman M, Karatekin E. ChemInform Abstract: Electron Spin Polarization and Time‐Resolved Electron Paramagnetic Resonance: Applications to the Paradigms of Molecular and Supramolecular Photochemistry. ChemInform 2010, 32: no-no. DOI: 10.1002/chin.200111295.
  • A Fast, Single-Vesicle Fusion Assay Mimics Physiological SNARE RequirementsKaratekin E, Di Giovanni J, Iborra C, Coleman J, O'Shaughnessy B, Seagar M, Rothman J. A Fast, Single-Vesicle Fusion Assay Mimics Physiological SNARE Requirements Biophysical Journal 2010, 98: 616a. DOI: 10.1016/j.bpj.2009.12.3362.
  • SNARE-Mediated Adhesion Kinetics in Giant Membrane SystemsWarner J, Karatekin E, O'Shaughnessy B. SNARE-Mediated Adhesion Kinetics in Giant Membrane Systems Biophysical Journal 2009, 96: 358a. DOI: 10.1016/j.bpj.2008.12.1808.
  • Transient pores in vesiclesKaratekin E, Sandre O, Brochard‐Wyart F. Transient pores in vesicles Polymer International 2003, 52: 486-493. DOI: 10.1002/pi.1007.
  • The photocopy method: measuring living chain distributions in radical polymerizationKaratekin E, O'Shaughnessy B, Turro N. The photocopy method: measuring living chain distributions in radical polymerization Macromolecular Symposia 2002, 182: 81-101. DOI: 10.1002/1521-3900(200206)182:1<81::aid-masy81>3.0.co;2-y.
  • Photocopying Living Chains. 1. Steady-StateKaratekin E, Landis M, Lem G, O'Shaughnessy B, Turro N. Photocopying Living Chains. 1. Steady-State Macromolecules 2001, 34: 8187-8201. DOI: 10.1021/ma010078f.
  • Photocopying Living Chains. 2. Time-Dependent MeasurementsKaratekin E, Landis M, Lem G, O'Shaughnessy B, Turro N. Photocopying Living Chains. 2. Time-Dependent Measurements Macromolecules 2001, 34: 8202-8215. DOI: 10.1021/ma0100798.
  • Elektronenspinpolarisation und zeitaufgelöste Elektronenspinresonanz: Anwendungen auf die Paradigmen der molekularen und supramolekularen PhotochemieTurro N, Kleinman M, Karatekin E. Elektronenspinpolarisation und zeitaufgelöste Elektronenspinresonanz: Anwendungen auf die Paradigmen der molekularen und supramolekularen Photochemie Angewandte Chemie 2000, 112: 4608-4634. DOI: 10.1002/1521-3757(20001215)112:24<4608::aid-ange4608>3.0.co;2-p.
  • Time-Resolved EPR: A Novel Method For Studying Living ChainsKaratekin E, O'Shaughnessy B, Turro N. Time-Resolved EPR: A Novel Method For Studying Living Chains Macromolecules 1998, 31: 7992-7995. DOI: 10.1021/ma980891j.
  • Kinetic Isolation of MacroradicalsKaratekin E, O'Shaughnessy B, Turro N. Kinetic Isolation of Macroradicals Macromolecules 1998, 31: 4655-4658. DOI: 10.1021/ma980176+.
  • Kinetic isolation of persistent radicals and application to polymer–polymer reactionsKaratekin E, O’Shaughnessy B, Turro N. Kinetic isolation of persistent radicals and application to polymer–polymer reactions The Journal Of Chemical Physics 1998, 108: 9577-9585. DOI: 10.1063/1.476406.