Lesley Devine, PhD
Technical Director Yale Flow Core FacilityDownloadHi-Res Photo
Cards
Appointments
Laboratory Medicine
Primary
Additional Titles
Scientific Director, Cancer Center Immune Monitoring Laboratory
Contact Info
Laboratory Medicine
PO Box 208035, 333 Cedar Street
New Haven, CT 06520-8035
United States
Appointments
Laboratory Medicine
Primary
Additional Titles
Scientific Director, Cancer Center Immune Monitoring Laboratory
Contact Info
Laboratory Medicine
PO Box 208035, 333 Cedar Street
New Haven, CT 06520-8035
United States
Appointments
Laboratory Medicine
Primary
Additional Titles
Scientific Director, Cancer Center Immune Monitoring Laboratory
Contact Info
Laboratory Medicine
PO Box 208035, 333 Cedar Street
New Haven, CT 06520-8035
United States
About
Titles
Technical Director Yale Flow Core Facility
Scientific Director, Cancer Center Immune Monitoring Laboratory
Appointments
Laboratory Medicine
Research ScientistPrimary
Other Departments & Organizations
Education & Training
- PhD
- University College (1995)
- BS
- University of Strathclyde, Biochemistry & Immunology (1991)
Research
Overview
Medical Research Interests
Angiogenesis Inhibitors; Diabetes Mellitus; Immune System; Medical Laboratory Science; Melanoma
ORCID
0009-0009-6369-0428- View Lab Website
Yale Flow Core Facility
Research at a Glance
Yale Co-Authors
Frequent collaborators of Lesley Devine's published research.
Publications Timeline
A big-picture view of Lesley Devine's research output by year.
Albert C Shaw, MD, PhD
Daniel Zelterman, PhD
Hailong Meng, PhD
Jeanne Hendrickson, MD
Jeremy Kortmansky, MD
Jill Lacy, MD
19Publications
644Citations
Publications
2023
Quantitative DNA Repair Biomarkers and Immune Profiling for Temozolomide and Olaparib in Metastatic Colorectal Cancer
Cecchini M, Zhang J, Wei W, Sklar J, Lacy J, Zhong M, Kong Y, Zhao H, DiPalermo J, Devine L, Stein S, Kortmansky J, Johung K, Bindra R, LoRusso P, Schalper K. Quantitative DNA Repair Biomarkers and Immune Profiling for Temozolomide and Olaparib in Metastatic Colorectal Cancer. Cancer Research Communications 2023, 3: 1132-1139. PMID: 37387791, PMCID: PMC10305782, DOI: 10.1158/2767-9764.crc-23-0045.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsConceptsWhole-exome sequencingMGMT protein expressionColorectal cancerStable diseaseQuantitative immunofluorescenceT cellsProtein expressionPromoter hypermethylationLow MGMT protein expressionPARP inhibitorsRadiographic tumor regressionMetastatic colorectal cancerAdvanced colorectal cancerPretreatment tumor biopsiesEffector T cellsTumor-infiltrating lymphocytesMGMT proteinDNA repair biomarkersBaseline CD8Eligible patientsIncreased CD8Methylguanine-DNA methyltransferaseObjective responseProgressive diseaseImmune markers
2022
Metabolomic and transcriptomic signatures of influenza vaccine response in healthy young and older adults
Chou C, Mohanty S, Kang HA, Kong L, Avila‐Pacheco J, Joshi SR, Ueda I, Devine L, Raddassi K, Pierce K, Jeanfavre S, Bullock K, Meng H, Clish C, Santori FR, Shaw AC, Xavier RJ. Metabolomic and transcriptomic signatures of influenza vaccine response in healthy young and older adults. Aging Cell 2022, 21: e13682. PMID: 35996998, PMCID: PMC9470889, DOI: 10.1111/acel.13682.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsInfluenza vaccine responsesInfluenza vaccinationVaccine responsesHigh respondersAntibody responseImmune responseMore effective influenza vaccinesOlder adultsEffective influenza vaccinesSevere respiratory infectionsRobust immune responseLow antibody responseInfluenza vaccineRespiratory infectionsSignificant morbiditySeasonal influenzaInflammatory responseAge-related differencesDay 28Flu seasonOlder subjectsVaccinationHR subjectsMetabolomic signaturePlasma metabolites
2018
Elevated Levels of CD64 MFI on Monocyte Subsets Are Associated with a History of Stroke in Sickle Cell Disease
Curtis S, Balbuena-Merle R, Devine L, Zelterman D, Roberts J, Dearborn-Tomazos J, Sansing L, Hendrickson J. Elevated Levels of CD64 MFI on Monocyte Subsets Are Associated with a History of Stroke in Sickle Cell Disease. Blood 2018, 132: 1093. DOI: 10.1182/blood-2018-99-117504.Peer-Reviewed Original ResearchCitationsConceptsHistory of strokeSickle cell diseaseRole of monocytesIschemic strokeTotal neutrophil countComplete blood countMonocyte subsetsStroke historyNeutrophil countIntermediate monocytesMonocyte subtypesBlood countClassical monocytesCell diseaseFuture stroke riskIschemic stroke historyVaso-occlusive crisisPro-inflammatory monocytesPathophysiology of strokeCause of morbidityMultivariate logistic regressionNon-classical monocytesT-testHigh-affinity receptorStudent's t-test
2008
Differential Expression of the Human CD8β Splice Variants and Regulation of the M-2 Isoform by Ubiquitination
Thakral D, Dobbins J, Devine L, Kavathas PB. Differential Expression of the Human CD8β Splice Variants and Regulation of the M-2 Isoform by Ubiquitination. The Journal Of Immunology 2008, 180: 7431-7442. PMID: 18490743, DOI: 10.4049/jimmunol.180.11.7431.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsCytoplasmic tailSplice variantsExpression patternsCell surfaceDifferent cytoplasmic tailsGene splice variantsMRNA expression patternsMRNA levelsFluorescent chimerasHuman genesHuman lineageDifferential mRNA expression patternsHeterodimer functionsExtracellular domainLysine residuesQuantitative RT-PCRDifferential expressionLysosomal compartmentTCR complexFunctional significanceIsoformsCD8B geneUbiquitinationCell linesPrimary humanDifferential Expression of Human CD8 Beta‐chain Isoforms and Regulation of M‐2 Isoform (splice variant 1) by Ubiquitination
Thakral D, Dobbins J, Devine L, Kavathas P. Differential Expression of Human CD8 Beta‐chain Isoforms and Regulation of M‐2 Isoform (splice variant 1) by Ubiquitination. The FASEB Journal 2008, 22: 367-367. DOI: 10.1096/fasebj.22.2_supplement.367.Peer-Reviewed Original ResearchConceptsCytoplasmic tailCell surfaceDifferent cytoplasmic tailsMRNA expression patternsMurine geneMRNA levelsFluorescent chimerasDifferential mRNA expression patternsExpression patternsExtracellular domainQuantitative RT-PCRDifferential expressionLysine residuesDifferential regulationUbiquitinationLysosomal compartmentSplice variantsTCR complexIsoformsT cell receptorPrimary human CD8CD8B geneMRNA patternsCell linesGenes
2006
Mapping the Binding Site on CD8β for MHC Class I Reveals Mutants with Enhanced Binding
Devine L, Thakral D, Nag S, Dobbins J, Hodsdon ME, Kavathas PB. Mapping the Binding Site on CD8β for MHC Class I Reveals Mutants with Enhanced Binding. The Journal Of Immunology 2006, 177: 3930-3938. PMID: 16951356, DOI: 10.4049/jimmunol.177.6.3930.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMHC class IClass IT cellsT cell responsesEffective immune responseT cell recognitionT cell hybridomasT cell membraneImmune responseCoreceptor functionCell responsesCell hybridomasInfected cellsCell recognitionIdentified mutationsCD8alphaCoreceptorCD8betaCDR3 loopsCellsEnhanced bindingCD8ImmunotherapyCD8alphabetaCD8β
2004
Location of the epitope for an anti-CD8α antibody 53.6.7 which enhances CD8α-MHC class I interaction indicates antibody stabilization of a higher affinity CD8 conformation
Devine L, Hodsdon ME, Daniels MA, Jameson SC, Kavathas PB. Location of the epitope for an anti-CD8α antibody 53.6.7 which enhances CD8α-MHC class I interaction indicates antibody stabilization of a higher affinity CD8 conformation. Immunology Letters 2004, 93: 123-130. PMID: 15158607, DOI: 10.1016/j.imlet.2004.02.002.Peer-Reviewed Original ResearchCitationsAltmetricMeSH KeywordsAnimalsAntibodies, MonoclonalAntibody AffinityAntibody SpecificityBiotinylationCD8 AntigensChlorocebus aethiopsCOS CellsEgg ProteinsEpitope MappingEscherichia coliFlow CytometryH-2 AntigensHistocompatibility Antigens Class IMiceModels, MolecularMutagenesis, Site-DirectedOligopeptidesOvalbuminPeptide FragmentsProtein BindingProtein ConformationTransfection
2002
The Complementarity-Determining Region-Like Loops of CD8α Interact Differently with β2-Microglobulin of the Class I Molecules H-2Kb and Thymic Leukemia Antigen, While Similarly with Their α3 Domains
Devine L, Rogozinski L, Naidenko OV, Cheroutre H, Kavathas PB. The Complementarity-Determining Region-Like Loops of CD8α Interact Differently with β2-Microglobulin of the Class I Molecules H-2Kb and Thymic Leukemia Antigen, While Similarly with Their α3 Domains. The Journal Of Immunology 2002, 168: 3881-3886. PMID: 11937542, DOI: 10.4049/jimmunol.168.8.3881.Peer-Reviewed Original ResearchCitationsMeSH KeywordsAmino Acid SequenceAmino Acid SubstitutionAnimalsAntigens, NeoplasmBeta 2-MicroglobulinCD8 AntigensComplementarity Determining RegionsCOS CellsDimerizationH-2 AntigensImmune SeraMembrane GlycoproteinsMiceMolecular Sequence DataMutagenesis, Site-DirectedPeptide FragmentsProtein BindingProtein Structure, SecondaryProtein Structure, TertiaryThymus GlandTransfectionA Non-class I MHC Intestinal Epithelial Surface Glycoprotein, gp180, Binds to CD8
Campbell N, Park M, Toy L, Yio X, Devine L, Kavathas P, Mayer L. A Non-class I MHC Intestinal Epithelial Surface Glycoprotein, gp180, Binds to CD8. Clinical Immunology 2002, 102: 267-274. PMID: 11890713, DOI: 10.1006/clim.2001.5170.Peer-Reviewed Original ResearchCitationsMeSH Keywords and ConceptsMeSH KeywordsAbsorptionAdaptor Proteins, Signal TransducingAnti-Bacterial AgentsAntibodies, MonoclonalBlotting, WesternCarcinoma, HepatocellularCarrier ProteinsCD40 AntigensCD8-Positive T-LymphocytesEnterocytesEnzyme-Linked Immunosorbent AssayEpitopesExtracellular Matrix ProteinsHumansImmediate-Early ProteinsLiver NeoplasmsMembrane GlycoproteinsPhosphorylationProteinsRecombinant Fusion ProteinsSequestosome-1 ProteinTransfectionTumor Cells, CulturedTunicamycinConceptsActivation of CD8T cellsIntestinal epithelial cellsCD8 moleculesEpithelial cellsMucosal immune responsesClass I MHCNormal intestinal epithelial cellsT cell activationMurine T cellsCD8 alphaImmune responseCytolytic activityI MHCCell activationMixed cell culture systemCD8Human CD8 alphaMonoclonal antibodiesCell culture systemActivationSurface glycoproteinTyrosine kinaseCellsGp180
2001
CD8 Binding to MHC Class I Molecules Is Influenced by T Cell Maturation and Glycosylation
Daniels M, Devine L, Miller J, Moser J, Lukacher A, Altman J, Kavathas P, Hogquist K, Jameson S. CD8 Binding to MHC Class I Molecules Is Influenced by T Cell Maturation and Glycosylation. Immunity 2001, 15: 1051-1061. PMID: 11754824, DOI: 10.1016/s1074-7613(01)00252-7.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAnimalsATP Binding Cassette Transporter, Subfamily B, Member 2ATP-Binding Cassette TransportersCD3 ComplexCD4-Positive T-LymphocytesCD8 AntigensCD8-Positive T-LymphocytesCell AdhesionCell DifferentiationCellular SenescenceGlycosylationH-2 AntigensHistocompatibility Antigen H-2DLigandsMacromolecular SubstancesMembrane GlycoproteinsMiceMice, Inbred BALB CMice, Inbred C57BLMice, KnockoutN-Acetylneuraminic AcidNeuraminidaseOvalbuminPeptide FragmentsProtein BindingProtein Processing, Post-TranslationalReceptors, Antigen, T-Cell, alpha-betaRheologySolubilityThymus GlandT-Lymphocyte SubsetsConceptsGlycosylation stateT cell maturationCell maturationT cell adhesionDevelopmental regulationDouble-positive thymocytesCell adhesionT cell activationClass I MHC tetramersAdhesion moleculesCell activationMHC class I moleculesMaturationClass I moleculesClass I MHC moleculesI MHC moleculesI moleculesMoleculesGlycosylationMHC ligandsRegulationMHC moleculesClass I MHCBindingSialylation
Get In Touch
Contacts
Academic Office Number
Lab Number
Mailing Address
Laboratory Medicine
PO Box 208035, 333 Cedar Street
New Haven, CT 06520-8035
United States