Grant Higerd-Rusli, PhD, MD
DownloadHi-Res Photo
About
Biography
Grant Higerd is an MD/PhD student of Dr. Stephen Waxman. His graduate work explores the trafficking of voltage-gated sodium channels in sensory neurons, with the goal of identifying novel mechanisms for non-addictive treatments for pain.
Departments & Organizations
Education & Training
- MD
- Yale School of Medicine (2024)
- PhD
- Yale University School of Medicine, Cellular and Molecular Physiology (2022)
- BS
- UCLA, Neuroscience (2015)
Research
Research at a Glance
Yale Co-Authors
Frequent collaborators of Grant Higerd-Rusli's published research.
Publications Timeline
A big-picture view of Grant Higerd-Rusli's research output by year.
Shujun Liu
Sidharth Tyagi, PhD
Sulayman Dib-Hajj, PhD
Stephen Waxman, MD, PhD
Matthew Alsaloum, PhD
Peng Zhao, PhD
9Publications
261Citations
Publications
2023
Conserved but not critical: Trafficking and function of NaV1.7 are independent of highly conserved polybasic motifs
Tyagi S, Sarveswaran N, Higerd-Rusli G, Liu S, Dib-Hajj F, Waxman S, Dib-Hajj S. Conserved but not critical: Trafficking and function of NaV1.7 are independent of highly conserved polybasic motifs. Frontiers In Molecular Neuroscience 2023, 16: 1161028. PMID: 37008789, PMCID: PMC10060856, DOI: 10.3389/fnmol.2023.1161028.Peer-Reviewed Original ResearchCitationsAltmetricConceptsSensory axonsPeripheral voltage-gated sodium channelsMajor unmet clinical needFunction of Nav1.7Non-addictive treatmentsUnmet clinical needVoltage-clamp recordingsVoltage-gated sodium channelsPain therapyChronic painPrimary afferentsNoxious stimuliTherapeutic modalitiesAction potentialsAxonal transportClinical needVesicular packagingSodium channelsHuman painPainAxonal traffickingAxonal surfaceAxonal membraneAxonsAttractive targetInflammation differentially controls transport of depolarizing Nav versus hyperpolarizing Kv channels to drive rat nociceptor activity
Higerd-Rusli G, Tyagi S, Baker C, Liu S, Dib-Hajj F, Dib-Hajj S, Waxman S. Inflammation differentially controls transport of depolarizing Nav versus hyperpolarizing Kv channels to drive rat nociceptor activity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2215417120. PMID: 36897973, PMCID: PMC10089179, DOI: 10.1073/pnas.2215417120.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsCell biological mechanismsAxonal surfaceLive-cell imagingIon channel traffickingAnterograde transport vesiclesTransport vesiclesInflammatory mediatorsChannel traffickingPlasma membraneVesicular loadingIon channelsKv channelsPotential therapeutic targetPotassium channel KSodium channel NaTraffickingBiological mechanismsTherapeutic targetAbundanceRetrograde transportDistal axonsChannel NaInflammatory painNociceptor activityAxonal transportPaclitaxel effects on axonal localization and vesicular trafficking of NaV1.8
Baker C, Tyagi S, Higerd-Rusli G, Liu S, Zhao P, Dib-Hajj F, Waxman S, Dib-Hajj S. Paclitaxel effects on axonal localization and vesicular trafficking of NaV1.8. Frontiers In Molecular Neuroscience 2023, 16: 1130123. PMID: 36860665, PMCID: PMC9970094, DOI: 10.3389/fnmol.2023.1130123.Peer-Reviewed Original ResearchCitationsAltmetricConceptsChemotherapy-induced peripheral neuropathyDorsal root gangliaPTX treatmentDRG axonsEffect of paclitaxelVoltage-gated sodium channel NaPain syndromePeripheral neuropathyDRG neuronsSodium channel NaRoot gangliaCell cycle arrestNeuronal somataSensory neuronsSide effectsTherapeutic targetingTumor growthPaclitaxel effectAntineoplastic agentsAxonal localizationPaclitaxelNumber of NaAxonal compartmentAxonsChannel Na
2022
The fates of internalized NaV1.7 channels in sensory neurons: Retrograde cotransport with other ion channels, axon-specific recycling, and degradation
Higerd-Rusli G, Tyagi S, Liu S, Dib-Hajj F, Waxman S, Dib-Hajj S. The fates of internalized NaV1.7 channels in sensory neurons: Retrograde cotransport with other ion channels, axon-specific recycling, and degradation. Journal Of Biological Chemistry 2022, 299: 102816. PMID: 36539035, PMCID: PMC9843449, DOI: 10.1016/j.jbc.2022.102816.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMembrane proteinsIon channelsNeuronal functionDistinct neuronal compartmentsAxonal membrane proteinsRetrograde traffickingNeuronal polarityRecycling pathwayLate endosomesPlasma membraneSpecific proteinsAxonal traffickingNovel mechanismCell membraneSodium channel NaNeuronal compartmentsMultiple pathwaysLive neuronsVoltage-gated sodium channel NaProteinEndocytosisMembrane specializationsTraffickingMembraneChannel NaDepolarizing NaV and Hyperpolarizing KV Channels Are Co-Trafficked in Sensory Neurons
Higerd-Rusli GP, Alsaloum M, Tyagi S, Sarveswaran N, Estacion M, Akin EJ, Dib-Hajj FB, Liu S, Sosniak D, Zhao P, Dib-Hajj SD, Waxman SG. Depolarizing NaV and Hyperpolarizing KV Channels Are Co-Trafficked in Sensory Neurons. Journal Of Neuroscience 2022, 42: 4794-4811. PMID: 35589395, PMCID: PMC9188389, DOI: 10.1523/jneurosci.0058-22.2022.Peer-Reviewed Original ResearchCitationsAltmetricConceptsIon channel traffickingMembrane proteinsChannel traffickingAxonal membrane proteinsTransport vesiclesPhysiological functionsSame vesiclesAxonal proteinsSpecific transport vesiclesIon channelsTrafficking of NaDiverse physiological functionsExcitability disordersDifferent physiological functionsDistinct ion channelsSensory neuron membraneSensory neuronsDistinct functional classesDistinct functional rolesNormal neuronal excitabilityTrafficking mechanismsNeuronal excitabilityPlasma membraneTherapeutic strategiesPrecise regulationInhibition of sodium conductance by cannabigerol contributes to a reduction of dorsal root ganglion neuron excitability
Ghovanloo M, Estacion M, Higerd‐Rusli G, Zhao P, Dib‐Hajj S, Waxman SG. Inhibition of sodium conductance by cannabigerol contributes to a reduction of dorsal root ganglion neuron excitability. British Journal Of Pharmacology 2022, 179: 4010-4030. PMID: 35297036, DOI: 10.1111/bph.15833.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsEffect of cannabigerolDRG neuronsDorsal root ganglion neuron excitabilityVoltage-gated sodium currentDorsal root ganglion neuronsLower CBG concentrationPrimary dorsal root ganglion neuronsAnalgesic drug developmentNon-psychotropic phytocannabinoidMultielectrode array recordingsAction potential modellingInhibition of NaDRG excitabilityGanglion neuronsNeuron excitabilityAnalgesic propertiesCNS neuronsNeuronal hypoexcitabilityCBG concentrationsChannel inhibitorsSodium currentNeuronsFunctional selectivityDrug developmentUnderlying mechanism
2021
Paclitaxel increases axonal localization and vesicular trafficking of Nav1.7
Akin EJ, Alsaloum M, Higerd GP, Liu S, Zhao P, Dib-Hajj FB, Waxman SG, Dib-Hajj SD. Paclitaxel increases axonal localization and vesicular trafficking of Nav1.7. Brain 2021, 144: 1727-1737. PMID: 33734317, PMCID: PMC8320304, DOI: 10.1093/brain/awab113.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsDorsal root ganglion neuronsChemotherapy-induced peripheral neuropathyGanglion neuronsSensory axonsNav1.7 channelsPTX treatmentSensory neuronsHuman sensory neuronsEffect of paclitaxelSodium channel Nav1.7Chemotherapy drug paclitaxelAxonal vesicular transportConcentrations of paclitaxelNav1.7 mRNAInflammatory mediatorsNav1.7 expressionPeripheral neuropathyInflammatory milieuPrimary afferentsInflammatory conditionsChannel expressionChannel Nav1.7Nav1.7Increased expressionAxonal localization
2020
Status of peripheral sodium channel blockers for non-addictive pain treatment
Alsaloum M, Higerd GP, Effraim PR, Waxman SG. Status of peripheral sodium channel blockers for non-addictive pain treatment. Nature Reviews Neurology 2020, 16: 689-705. PMID: 33110213, DOI: 10.1038/s41582-020-00415-2.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsCitationsAltmetricMeSH Keywords and ConceptsConceptsPain conditionsPain treatmentDose-limiting adverse effectUnmet health care needsAdverse effectsMediators of painMultiple pain conditionsCommon pain conditionsCardiac adverse effectsTrigeminal ganglion neuronsTreatment of painDorsal root gangliaPeripheral nervous systemHuman pain disordersSodium channel blockersHealth care needsVoltage-gated sodium channelsImproved therapeutic agentsCurrent medicationsPain disordersPain managementGanglion neuronsRoot gangliaSafe treatmentClinical trials
2019
Building sensory axons: Delivery and distribution of NaV1.7 channels and effects of inflammatory mediators
Akin EJ, Higerd-Rusli GP, Mis MA, Tanaka BS, Adi T, Liu S, Dib-Hajj FB, Waxman SG, Dib-Hajj SD. Building sensory axons: Delivery and distribution of NaV1.7 channels and effects of inflammatory mediators. Science Advances 2019, 5: eaax4755. PMID: 31681845, PMCID: PMC6810356, DOI: 10.1126/sciadv.aax4755.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMicrotubule-dependent vesicular transportSingle-molecule resolutionVesicular traffickingVesicular transportSurface deliveryPlasma membraneMembrane distributionFunctional studiesAxon terminiSodium channel NaLive visualizationSensory axonsVesiclesTraffickingNew insightsChannel NaContribution of NaDisease statesRab6ANav1.7 channelsDorsal root ganglion neuronsTerminusThreefold increaseGanglion neuronsMembrane