2020
A Splice Intervention Therapy for Autosomal Recessive Juvenile Parkinson’s Disease Arising from Parkin Mutations
Li D, Aung-Htut M, Ham K, Fletcher S, Wilton S. A Splice Intervention Therapy for Autosomal Recessive Juvenile Parkinson’s Disease Arising from Parkin Mutations. International Journal Of Molecular Sciences 2020, 21: 7282. PMID: 33019779, PMCID: PMC7582384, DOI: 10.3390/ijms21197282.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingBase SequenceExonsFibroblastsGene ExpressionGenetic TherapyHeterozygoteHumansMitochondriaMorpholinosOligonucleotides, AntisenseOpen Reading FramesParkinsonian DisordersPrecision MedicinePrimary Cell CultureRNA, MessengerSequence DeletionTumor Suppressor Protein p53Ubiquitin-Protein LigasesConceptsReading frameAutosomal recessive juvenile Parkinson diseaseInducing exon 4 skippingAntisense oligomersJuvenile-onset Parkinson's diseaseExon 4 skippingUbiquitin-proteasome systemMRNA reading frameGenomic deletionsE3 ligaseTranscriptional repressorJuvenile Parkinson's diseaseDepolarised mitochondriaExon 3 deletionParkin proteinExon 3Parkin isoformsParkin expressionParkin mutationsNeuroprotective proteinMutationsTranscriptionDeletionParkinIsoformsParkin Coordinates Platelet Stress Response in Diabetes Mellitus: A Big Role in a Small Cell
Lee SH, Du J, Hwa J, Kim WH. Parkin Coordinates Platelet Stress Response in Diabetes Mellitus: A Big Role in a Small Cell. International Journal Of Molecular Sciences 2020, 21: 5869. PMID: 32824240, PMCID: PMC7461561, DOI: 10.3390/ijms21165869.Peer-Reviewed Original ResearchMeSH Keywords14-3-3 ProteinsAnimalsBlood PlateletsCells, CulturedDiabetes MellitusHumansLysosomal Membrane ProteinsMiceMice, Inbred C57BLMitochondriaMitochondrial Trifunctional Protein, alpha SubunitMitophagyPlatelet ActivationProtein BindingProtein Serine-Threonine KinasesStress, PhysiologicalUbiquitin-Protein LigasesValosin Containing ProteinConceptsDiabetes mellitusDiabetic plateletsPlatelet activationNew potential therapeutic targetsEndogenous protective rolePotential therapeutic targetHealthy controlsMitochondrial β-oxidationPlatelet mitochondrial dysfunctionHealthy plateletsTherapeutic targetProtective rolePlatelet aggregationMitochondrial protectionMitochondrial dysfunctionMellitusPlateletsΒ-oxidationStress responseActivationParkinParkin-dependent mitophagyCellsDysfunctionTargeting lysosomes
2019
Mitochondrial MsrB2 serves as a switch and transducer for mitophagy
Lee SH, Lee S, Du J, Jain K, Ding M, Kadado AJ, Atteya G, Jaji Z, Tyagi T, Kim W, Herzog RI, Patel A, Ionescu CN, Martin KA, Hwa J. Mitochondrial MsrB2 serves as a switch and transducer for mitophagy. EMBO Molecular Medicine 2019, 11: emmm201910409. PMID: 31282614, PMCID: PMC6685081, DOI: 10.15252/emmm.201910409.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood PlateletsCell LineDiabetes MellitusFemaleHumansMethionine Sulfoxide ReductasesMice, Inbred C57BLMice, KnockoutMicrofilament ProteinsMicrotubule-Associated ProteinsMitochondriaMitochondrial Membrane Transport ProteinsMitochondrial Permeability Transition PoreMitophagyMutationOxidation-ReductionOxidative StressParkinson DiseaseSignal TransductionUbiquitin-Protein LigasesUbiquitinationConceptsReduced mitophagyOxidative stress-induced mitophagyNovel regulatory mechanismStress-induced mitophagyLC3 interactionMitochondrial matrixDamaged mitochondriaMsrB2Reactive oxygen speciesRegulatory mechanismsMethionine oxidationMitophagyMitochondriaPlatelet apoptosisOxygen speciesPlatelet-specific knockoutApoptosisPathophysiological importanceExpressionImportant roleUbiquitinationParkin mutationsParkinSpeciesLC3
2015
STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson’s disease
Kurup PK, Xu J, Videira RA, Ononenyi C, Baltazar G, Lombroso PJ, Nairn AC. STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson’s disease. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 1202-1207. PMID: 25583483, PMCID: PMC4313846, DOI: 10.1073/pnas.1417423112.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCorpus StriatumCyclic AMP Response Element-Binding ProteinDown-RegulationGene Expression Regulation, EnzymologicHEK293 CellsHumansMAP Kinase Signaling SystemMiceMice, KnockoutMitogen-Activated Protein Kinase 3MPTP PoisoningProtein Tyrosine Phosphatases, Non-ReceptorRatsRats, Sprague-DawleyUbiquitin-Protein LigasesUbiquitinationUp-RegulationConceptsE3 ubiquitin ligase ParkinSubstantia nigra pars compactaPathophysiology of PDProtein tyrosine phosphataseUbiquitin ligase ParkinSporadic Parkinson's diseaseE3 ligase ParkinRegulation of ParkinParkinson's diseaseTyrosine phosphataseParkin mutantsE3 ligaseProteasome systemDopaminergic neuronsDownstream targetsAutosomal recessive juvenile parkinsonismNovel substrateSTEP61ParkinCellular modelSTEP61 levelsSNc dopaminergic neuronsProtein levelsFunction contributesERK1/2
2013
NAC1, A POZ/BTB protein interacts with Parkin and may contribute to Parkinson’s disease
Korutla L, Furlong H, Mackler S. NAC1, A POZ/BTB protein interacts with Parkin and may contribute to Parkinson’s disease. Neuroscience 2013, 257: 86-95. PMID: 24231739, DOI: 10.1016/j.neuroscience.2013.11.001.Peer-Reviewed Original ResearchMeSH KeywordsAged, 80 and overAnimalsBrainCell Line, TransformedCentral Nervous SystemCysteine Proteinase InhibitorsCytoplasmDown-RegulationGlutathione TransferaseHumansImmunoprecipitationLeupeptinsMaleMiceNerve Tissue ProteinsNeuronsParkinson DiseaseProteasome Endopeptidase ComplexRepressor ProteinsUbiquitin-Protein LigasesConceptsNucleus accumbens-1Neuronal cell deathParkinson's diseaseDisease patientsParkinson's disease patientsProteasomal activityPOZ/BTB proteinCell deathNeuronal cellsDiseaseParkin levelsProtein levelsCell susceptibilityParkin proteinProteasome protein levelsPatientsProteasome activityUbiquitin-dependent proteasome degradationCell viabilityParkin degradationDeathParkinKey proteinsProteasome degradationToxicity
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply