2024
TRPM8 Mutations Associated With Persistent Pain After Surgical Injury of Corneal Trigeminal Axons
Ghovanloo M, Effraim P, Tyagi S, Aldrich A, Cheng X, Yuan J, Schulman B, Jacobs D, Dib-Hajj S, Waxman S. TRPM8 Mutations Associated With Persistent Pain After Surgical Injury of Corneal Trigeminal Axons. Neurology Genetics 2024, 10: e200206. PMID: 39555137, PMCID: PMC11567650, DOI: 10.1212/nxg.0000000000200206.Peer-Reviewed Original ResearchLaser-assisted in situ keratomileusisPostoperative ocular painTrigeminal ganglion neuronsOcular painMultielectrode array recordingsPersistent painGanglion neuronsLaser-assisted in situ keratomileusis surgeryAxonal injuryRat trigeminal ganglion neuronsTransient receptor potential cation channelCorneal refractive surgeryMultielectrode arraysAnalysis of patientsPatch-clamp analysisGenomic analysis of patientsWild-typePatch-clamp resultsExposure to mentholRefractive surgeryHyperpolarizing directionNeuronal hyperexcitabilityPain-freeTrigeminal axonsWT channels
2023
Genetic, electrophysiological, and pathological studies on patients with SCN9A‐related pain disorders
Yuan J, Cheng X, Matsuura E, Higuchi Y, Ando M, Hashiguchi A, Yoshimura A, Nakachi R, Mine J, Taketani T, Maeda K, Kawakami S, Kira R, Tanaka S, Kanai K, Dib‐Hajj F, Dib‐Hajj S, Waxman S, Takashima H. Genetic, electrophysiological, and pathological studies on patients with SCN9A‐related pain disorders. Journal Of The Peripheral Nervous System 2023, 28: 597-607. PMID: 37555797, DOI: 10.1111/jns.12590.Peer-Reviewed Original ResearchConceptsParoxysmal extreme pain disorderPainful peripheral neuropathyPain disordersSCN9A mutationsPeripheral neuropathyNovel SCN9A mutationsVoltage-gated sodium channel Nav1.7Sodium channel Nav1.7Steady-state fast inactivationGene panel sequencingPatch-clamp analysisAutonomic neuropathyNeuropathic painSCN9A geneClinical featuresUnderlying pathogenesisPathological studiesPatientsChannel Nav1.7EM phenotypePhenotypic spectrumNeuropathyNav1.7 channelsPatch-clamp systemElectrophysiological analysis
2008
NaV1.7 Gain-of-Function Mutations as a Continuum: A1632E Displays Physiological Changes Associated with Erythromelalgia and Paroxysmal Extreme Pain Disorder Mutations and Produces Symptoms of Both Disorders
Estacion M, Dib-Hajj SD, Benke PJ, Morsche R, Eastman EM, Macala LJ, Drenth JP, Waxman SG. NaV1.7 Gain-of-Function Mutations as a Continuum: A1632E Displays Physiological Changes Associated with Erythromelalgia and Paroxysmal Extreme Pain Disorder Mutations and Produces Symptoms of Both Disorders. Journal Of Neuroscience 2008, 28: 11079-11088. PMID: 18945915, PMCID: PMC6671384, DOI: 10.1523/jneurosci.3443-08.2008.Peer-Reviewed Original ResearchMeSH KeywordsAlanineAnimalsAnimals, NewbornCells, CulturedChildDose-Response Relationship, RadiationElectric StimulationErythromelalgiaGanglia, SpinalGlutamic AcidHumansMaleMembrane PotentialsModels, MolecularMutationNAV1.7 Voltage-Gated Sodium ChannelNeuronsPatch-Clamp TechniquesRatsRats, Sprague-DawleySodium ChannelsSomatoform DisordersTime FactorsTransfectionConceptsParoxysmal extreme pain disorderDorsal root gangliaTrigeminal ganglion neuronsClinical phenotypeGanglion neuronsMixed clinical phenotypePersistent inward currentsFunction mutationsPatch-clamp analysisPEPD mutationsPain disordersFast inactivationRoot gangliaInward currentsDistinct disordersCurrent clampErythromelalgiaDisordersPainChannel functionVoltage dependencePhysiological changesNeuronsIEMPhenotype
2006
Sporadic onset of erythermalgia: A gain‐of‐function mutation in Nav1.7
Han C, Rush AM, Dib‐Hajj S, Li S, Xu Z, Wang Y, Tyrrell L, Wang X, Yang Y, Waxman SG. Sporadic onset of erythermalgia: A gain‐of‐function mutation in Nav1.7. Annals Of Neurology 2006, 59: 553-558. PMID: 16392115, DOI: 10.1002/ana.20776.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAmino Acid SequenceCell LineChinaDNA Mutational AnalysisDose-Response Relationship, RadiationElectric StimulationErythromelalgiaExonsFamily HealthHumansLeucineMaleMembrane PotentialsModels, MolecularMutationNAV1.7 Voltage-Gated Sodium ChannelPatch-Clamp TechniquesPhenylalanineSodium ChannelsTransfectionConceptsSporadic casesPeripheral sensory neuronsWhole-cell patch-clamp analysisAsymptomatic family membersPatch-clamp analysisAutosomal dominant disorderMild thermal stimuliSporadic onsetSensory neuronsErythermalgiaAsymptomatic fatherSmall depolarizationSodium channelsFounder mutationDominant disorderClamp analysisChannel activationThermal stimuliPatientsFunction mutationsFamily membersMultigeneration familySingle amino acid substitutionAmino acid substitutionsChinese family
2002
Absence of Small Conductance K+ Channel (SK) Activity in Apical Membranes of Thick Ascending Limb and Cortical Collecting Duct in ROMK (Bartter's) Knockout Mice*
Lu M, Wang T, Yan Q, Yang X, Dong K, Knepper MA, Wang W, Giebisch G, Shull GE, Hebert SC. Absence of Small Conductance K+ Channel (SK) Activity in Apical Membranes of Thick Ascending Limb and Cortical Collecting Duct in ROMK (Bartter's) Knockout Mice*. Journal Of Biological Chemistry 2002, 277: 37881-37887. PMID: 12130653, PMCID: PMC4426997, DOI: 10.1074/jbc.m206644200.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsBartter SyndromeBase SequenceCell MembraneDisease Models, AnimalDNA PrimersGene Expression RegulationGenotypeHumansKidneyKidney CortexKidney Tubules, CollectingMiceMice, KnockoutPotassium ChannelsPotassium Channels, Calcium-ActivatedPotassium Channels, Inwardly RectifyingPotassium ChlorideSmall-Conductance Calcium-Activated Potassium ChannelsSurvival AnalysisConceptsThick ascending limbSK channel activityROMK null miceBartter's syndromeNull miceSK channelsAscending limbChannel activityExtracellular volume depletionROMK geneCortical collecting ductsWild-type littermatesAbsorption/secretionROMK knockout miceNull mice exhibitPatch-clamp analysisSmall conductanceSignificant hydronephrosisRenal morphologyVolume depletionKnockout miceMice exhibitSyndromeCollecting ductsNaCl reabsorption
2001
Glycosylation Alters Steady-State Inactivation of Sodium Channel Nav1.9/NaN in Dorsal Root Ganglion Neurons and Is Developmentally Regulated
Tyrrell L, Renganathan M, Dib-Hajj S, Waxman S. Glycosylation Alters Steady-State Inactivation of Sodium Channel Nav1.9/NaN in Dorsal Root Ganglion Neurons and Is Developmentally Regulated. Journal Of Neuroscience 2001, 21: 9629-9637. PMID: 11739573, PMCID: PMC6763018, DOI: 10.1523/jneurosci.21-24-09629.2001.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsAnimals, NewbornAntibody SpecificityAxotomyCell MembraneCells, CulturedFemaleGanglia, SpinalGlycosylationImmunoblottingMembrane PotentialsN-Acetylneuraminic AcidNAV1.9 Voltage-Gated Sodium ChannelNeuraminidaseNeuronsNeuropeptidesPatch-Clamp TechniquesRatsRats, Sprague-DawleySciatic NerveSodiumSodium ChannelsSubcellular FractionsTetrodotoxinTrigeminal GanglionConceptsImmunoreactive proteinMembrane fractionAdult DRG neuronsTranscription-PCR analysisHigh molecular weight immunoreactive proteinTheoretical molecular weightWhole-cell patch-clamp analysisLong transcriptsGlycosylation statePatch-clamp analysisAdult tissuesLarge proteinsLimited glycosylationEnzymatic deglycosylationExtensive glycosylationState of glycosylationProteinAdult dorsal root gangliaGlycosylationNative neuronsDevelopmental changesInactivationMembrane preparationsDRG neuronsDorsal root ganglia
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply