2024
The mTOR pathway genes MTOR, Rheb, Depdc5, Pten, and Tsc1 have convergent and divergent impacts on cortical neuron development and function
Nguyen L, Xu Y, Nair M, Bordey A. The mTOR pathway genes MTOR, Rheb, Depdc5, Pten, and Tsc1 have convergent and divergent impacts on cortical neuron development and function. ELife 2024, 12: rp91010. PMID: 38411613, PMCID: PMC10942629, DOI: 10.7554/elife.91010.Peer-Reviewed Original ResearchConceptsMouse medial prefrontal cortexMedial prefrontal cortexFocal malformations of cortical developmentMalformations of cortical developmentExcitatory synaptic activityExcitatory synaptic transmissionCortical neuron developmentPyramidal neuron morphologyMechanisms of hyperexcitabilityResponse to therapeutic interventionsMTORC1 signalingGene-specific mechanismsPrefrontal cortexFocal malformationsBrain somatic mutationsMTOR complex 1Membrane excitabilityBiallelic inactivationClinical manifestationsGene mutationsNetwork hyperexcitabilitySynaptic transmissionSynaptic activityIntractable epilepsyRepressor geneThe mTOR pathway genes MTOR, Rheb, Depdc5, Pten, and Tsc1 have convergent and divergent impacts on cortical neuron development and function
Nguyen L, Xu Y, Nair M, Bordey A. The mTOR pathway genes MTOR, Rheb, Depdc5, Pten, and Tsc1 have convergent and divergent impacts on cortical neuron development and function. ELife 2024, 12 DOI: 10.7554/elife.91010.3.Peer-Reviewed Original ResearchMouse medial prefrontal cortexMedial prefrontal cortexFocal malformations of cortical developmentMalformations of cortical developmentExcitatory synaptic activityExcitatory synaptic transmissionCortical neuron developmentPyramidal neuron morphologyMechanisms of hyperexcitabilityResponse to therapeutic interventionsMTORC1 signalingGene-specific mechanismsPrefrontal cortexFocal malformationsBrain somatic mutationsMTOR complex 1Membrane excitabilityBiallelic inactivationClinical manifestationsGene mutationsNetwork hyperexcitabilitySynaptic transmissionSynaptic activityIntractable epilepsyRepressor gene
2019
Mechanisms of hyperexcitability in Alzheimer’s disease hiPSC-derived neurons and cerebral organoids vs isogenic controls
Ghatak S, Dolatabadi N, Trudler D, Zhang X, Wu Y, Mohata M, Ambasudhan R, Talantova M, Lipton S. Mechanisms of hyperexcitability in Alzheimer’s disease hiPSC-derived neurons and cerebral organoids vs isogenic controls. ELife 2019, 8: e50333. PMID: 31782729, PMCID: PMC6905854, DOI: 10.7554/elife.50333.Peer-Reviewed Original ResearchConceptsDisease brainNeuronal culturesHuman Alzheimer's disease brainCerebral organoidsAD-related mutationsHiPSC-derived neuronsTransgenic AD miceInhibitory synaptic activityMechanisms of hyperexcitabilityAlzheimer's disease brainAberrant electrical activitySodium current densityAD micePathophysiological correlatesSynaptic dysfunctionAD pathophysiologyExcessive excitabilitySynaptic activityObserved hyperexcitabilityCognitive declineBursting activityHyperexcitabilityPresenilin 1Electrical activityNeurite length
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply