2024
Ceramide synthesis inhibitors prevent lipid-induced insulin resistance through the DAG-PKCε-insulin receptorT1150 phosphorylation pathway
Xu W, Zhang D, Ma Y, Gaspar R, Kahn M, Nasiri A, Murray S, Samuel V, Shulman G. Ceramide synthesis inhibitors prevent lipid-induced insulin resistance through the DAG-PKCε-insulin receptorT1150 phosphorylation pathway. Cell Reports 2024, 43: 114746. PMID: 39302831, DOI: 10.1016/j.celrep.2024.114746.Peer-Reviewed Original ResearchLipid-induced hepatic insulin resistanceHepatic insulin resistancePhosphorylation pathwayAntisense oligonucleotidesCeramide synthesis inhibitorsLipid-induced insulin resistanceMyriocin treatmentCeramide synthesisDihydroceramide desaturaseInsulin resistanceHepatic ceramideMyriocinCeramideCeramide contentInsulin-sensitizing effectsPhosphorylationHepatic insulin sensitivityPathwaySynthetic pathwayDES1Glucose productionSynthesis inhibitorDGAT2DesaturaseInhibition
2021
335-OR: Lipid-Induced Insulin Resistance in the Renal Cortex Is Associated with Plasma Membrane Sn-1,2-diacylglycerol Accumulation and PKCe Translocation
HUBBARD B, GASPAR R, ZHANG D, KAHN M, NASIRI A, ZHANG X, CLINE G, SHULMAN G. 335-OR: Lipid-Induced Insulin Resistance in the Renal Cortex Is Associated with Plasma Membrane Sn-1,2-diacylglycerol Accumulation and PKCe Translocation. Diabetes 2021, 70 DOI: 10.2337/db21-335-or.Peer-Reviewed Original ResearchHigh-fat dietInsulin receptorInsulin resistanceLipid-induced insulin resistanceRC miceProtein kinase CεRegular chowHFD miceRenal cortexCitrate synthase fluxHyperinsulinemic-euglycemic clamp conditionsAktS473 phosphorylationFatty acid fluxPyruvate oxidationPKCε translocationPyruvate dehydrogenase fluxPhosphorylationDiacylglycerol accumulationHFD feedingFat dietSpouse/partnerFold increaseSynthase fluxTranslocationIonis Pharmaceuticals
2020
One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension
Bilet L, Phielix E, van de Weijer T, Gemmink A, Bosma M, Moonen-Kornips E, Jorgensen JA, Schaart G, Zhang D, Meijer K, Hopman M, Hesselink MKC, Ouwens DM, Shulman GI, Schrauwen-Hinderling VB, Schrauwen P. One-leg inactivity induces a reduction in mitochondrial oxidative capacity, intramyocellular lipid accumulation and reduced insulin signalling upon lipid infusion: a human study with unilateral limb suspension. Diabetologia 2020, 63: 1211-1222. PMID: 32185462, PMCID: PMC7228997, DOI: 10.1007/s00125-020-05128-1.Peer-Reviewed Original ResearchConceptsMitochondrial oxidative capacityLow mitochondrial oxidative capacityLipid infusionInsulin resistancePhysical inactivityOxidative capacityLipid-induced insulin resistanceUnilateral lower limb suspensionConclusions/interpretationTogetherIntramyocellular lipid depositionMusculus tibialis anteriorChronic metabolic disorderIntramyocellular lipid accumulationType 2 diabetesReduced insulin sensitivityMuscle fat accumulationMusculus vastus lateralisMitochondrial functionUnilateral limb suspensionIMCL contentContralateral legInsulin sensitivityResultsIn vivoTibialis anteriorFat accumulation
2019
Anti‐inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid‐induced insulin resistance
Camporez JP, Lyu K, Goldberg EL, Zhang D, Cline GW, Jurczak MJ, Dixit VD, Petersen KF, Shulman GI. Anti‐inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid‐induced insulin resistance. The Journal Of Physiology 2019, 597: 3885-3903. PMID: 31206703, PMCID: PMC6876753, DOI: 10.1113/jp277270.Peer-Reviewed Original ResearchConceptsObesity-induced insulin resistanceHigh-fat dietEctopic lipid contentWhite adipose tissue lipolysisInsulin resistanceAdipose tissue lipolysisMale miceInsulin sensitivityFemale miceInsulin-stimulated suppressionWAT inflammationTissue lipolysisRodent studiesTumor necrosis factor αWhole-body insulin sensitivityLipid-induced insulin resistanceMetabolic homeostasisAge-matched menInterleukin-6 concentrationsSkeletal muscleAnti-inflammatory effectsType 2 diabetesInsulin-mediated suppressionSexual dimorphic responseNecrosis factor α
2018
PKCε contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling
Gassaway BM, Petersen MC, Surovtseva YV, Barber KW, Sheetz JB, Aerni HR, Merkel JS, Samuel VT, Shulman GI, Rinehart J. PKCε contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2018, 115: e8996-e9005. PMID: 30181290, PMCID: PMC6156646, DOI: 10.1073/pnas.1804379115.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedDiabetes Mellitus, Type 2Diet, High-FatDisease Models, AnimalGene Knockdown TechniquesHumansInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLipid MetabolismLiverPhosphorylationProtein Kinase C-epsilonProteomicsRatsReceptor, InsulinRibosomal Protein S6Ribosomal Protein S6 Kinases, 70-kDaRNA, Small InterferingSignal TransductionConceptsHigh-fat diet-induced hepatic insulin resistanceDiet-induced hepatic insulin resistanceLipid-induced insulin resistanceProtein phosphorylationSiRNA-based screenProtein kinase C εSet of proteinsCross talkHepatic insulin resistanceQuantitative phosphoproteomicsMotif analysisUnknown regulatorKinase assaysPhosphoproteomic dataCanonical insulinP70S6KInsulin receptorImpact of lipidSystem-level approachPKCεDiacylglycerolPhosphorylationKey mediatorNew therapeutic approachesInsulin resistance
2017
Mitochondrial Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation
Lee HY, Lee JS, Alves T, Ladiges W, Rabinovitch PS, Jurczak MJ, Choi CS, Shulman GI, Samuel VT. Mitochondrial Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation. Diabetes 2017, 66: db161334. PMID: 28476930, PMCID: PMC5521865, DOI: 10.2337/db16-1334.Peer-Reviewed Original ResearchConceptsHigh-fat dietMuscle insulin resistanceAcute lipid infusionInsulin resistanceRegular chowLipid infusionMCAT miceInsulin actionLipid-induced insulin resistanceDiet-induced insulin resistanceReactive oxygen speciesHyperinsulinemic-euglycemic clampWild-type miceMuscle fat oxidationIntramuscular lipid accumulationROS productionAcute infusionHFD-fedWT miceImpaired insulinPKCθ activationFat oxidationLipid emulsionMuscle insulinMice
2016
Mitochondrial Protonophores For Treatment of NAFLD/NASH and Type 2 Diabetes
Shulman G. Mitochondrial Protonophores For Treatment of NAFLD/NASH and Type 2 Diabetes. The FASEB Journal 2016, 30 DOI: 10.1096/fasebj.30.1_supplement.257.2.Peer-Reviewed Original ResearchType 2 diabetesInsulin resistanceLipid-induced insulin resistanceNAFLD/NASHSkeletal muscleAdipose tissue inflammationEctopic lipid depositionNon-alcoholic steatohepatitisAmerican Diabetes AssociationEctopic lipid depositsAlcoholic steatohepatitisDiabetes AssociationTissue inflammationRecent studiesLipid depositionType 2Lipid depositsHepatic gluconeogenesisCellular mechanismsMitochondrial protonophoreDiabetesMitochondrial inefficiencyLiverMuscleMolecular triggers
2015
Second‐generation antisense oligonucleotides against β‐catenin protect mice against diet‐induced hepatic steatosis and hepatic and peripheral insulin resistance
Popov VB, Jornayvaz FR, Akgul EO, Kanda S, Jurczak MJ, Zhang D, Abudukadier A, Majumdar SK, Guigni B, Petersen KF, Manchem VP, Bhanot S, Shulman GI, Samuel VT. Second‐generation antisense oligonucleotides against β‐catenin protect mice against diet‐induced hepatic steatosis and hepatic and peripheral insulin resistance. The FASEB Journal 2015, 30: 1207-1217. PMID: 26644352, PMCID: PMC4750414, DOI: 10.1096/fj.15-271999.Peer-Reviewed Original ResearchConceptsHepatic steatosisInsulin resistanceAntisense oligonucleotideDiet-induced hepatic steatosisWhole-body glucose metabolismLipid-induced insulin resistanceMale C57BL/6 micePeripheral insulin resistanceHyperinsulinemic-euglycemic clampType 2 diabetesHepatic insulin sensitivityΒ-cateninHepatic lipid compositionWhite adipose tissueWnt/β-cateninΒ-catenin expressionMetabolic syndromeProtect miceC57BL/6 miceΒ-catenin mRNAFed miceHepatic triglyceridesInsulin sensitivityAwake miceGlucose metabolism
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply