2025
CRISPR-Cas13d Functional Transcriptomics Reveals Widespread Isoform-Selective Cancer Dependencies on LncRNAs
Morelli E, Aktas Samur A, Maisano D, Gao C, Favasuli V, Papaioannou D, De Nola G, Henninger J, Liu N, Turi M, Folino P, Vreux L, Cumerlato M, Chen L, Aifantis I, Fulciniti M, Anderson K, Lytton-Jean A, Gulla A, Young R, Samur M, Munshi N. CRISPR-Cas13d Functional Transcriptomics Reveals Widespread Isoform-Selective Cancer Dependencies on LncRNAs. Blood 2025 PMID: 40403231, DOI: 10.1182/blood.2025028746.Peer-Reviewed Original ResearchCRISPR-Cas13dMultiple myelomaTE-lncRNAsIsoform-specific functionsDiverse cancer cell linesMM patientsCancer cell linesCellular proteostasisSubcellular localizationTumor cellsClinical dataCancer transcriptomeCytosolic isoformEndoplasmic reticulumFunctional transcriptomeHeat shock proteinsCancer dependenciesMM-specificClinical relevanceAnimal modelsLong noncoding RNAsLncRNA transcriptomeTherapeutic potentialCharacterize hundredsTranscriptome
2020
A lower affinity to cytosolic proteins reveals VDAC3 isoform-specific role in mitochondrial biology
Queralt-Martín M, Bergdoll L, Teijido O, Munshi N, Jacobs D, Kuszak A, Protchenko O, Reina S, Magrì A, De Pinto V, Bezrukov S, Abramson J, Rostovtseva T. A lower affinity to cytosolic proteins reveals VDAC3 isoform-specific role in mitochondrial biology. Journal Of General Physiology 2020, 152: e201912501. PMID: 31935282, PMCID: PMC7062508, DOI: 10.1085/jgp.201912501.Peer-Reviewed Original ResearchConceptsVoltage-dependent anion channelCysteine residuesMitochondrial outer membraneGeneral molecular mechanismIsoform-specific functionsHigh sequence similarityCysteine-scanning mutagenesisIsoform-specific rolesIsoform-specific regulationUnique functional rolesMitochondrial biologyVDAC isoformsMetabolite exchangeOuter membraneScanning mutagenesisCytosolic proteinsΑ-synucleinAnion channelVoltage-gated channelsMolecular mechanismsMitochondrial bioenergeticsProtein α-synucleinVDAC3VDAC1Functional role
2009
Structural basis of competition between PINCH1 and PINCH2 for binding to the ankyrin repeat domain of integrin-linked kinase
Chiswell BP, Stiegler AL, Razinia Z, Nalibotski E, Boggon TJ, Calderwood DA. Structural basis of competition between PINCH1 and PINCH2 for binding to the ankyrin repeat domain of integrin-linked kinase. Journal Of Structural Biology 2009, 170: 157-163. PMID: 19963065, PMCID: PMC2841223, DOI: 10.1016/j.jsb.2009.12.002.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid SequenceAnkyrin RepeatBinding, CompetitiveCrystallizationDNA-Binding ProteinsGene Expression RegulationLIM Domain ProteinsMembrane ProteinsModels, MolecularMolecular Sequence DataMutagenesisProtein BindingProtein Serine-Threonine KinasesSignal TransductionConceptsIntegrin-linked kinaseAnkyrin repeat domainLIM1 domainIPP complexIsoform-specific functionsIntegrin adhesion receptorsDifferent cellular responsesPINCH2Repeat domainPINCH1Point mutagenesisStructural basisAdhesion receptorsCellular responsesAlters localizationDifferential regulationSame binding siteDirect competitionBinding sitesKinaseDomainAnkyrinParvinMutagenesisMammals
2001
Regulation of Ins(1,4,5)P3 receptor isoforms by endogenous modulators
Thrower E, Hagar R, Ehrlich B. Regulation of Ins(1,4,5)P3 receptor isoforms by endogenous modulators. Trends In Pharmacological Sciences 2001, 22: 580-586. PMID: 11698102, DOI: 10.1016/s0165-6147(00)01809-5.Peer-Reviewed Original Research
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply